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Preoperative diet impacts the adipose
tissue response to surgical trauma
Binh Nguyen, MD,a Ming Tao, MD,a Peng Yu, MD,a Christine Mauro, MD,a

Michael A. Seidman, MD, PhD,b Yaoyu E. Wang, PhD,c James Mitchell, PhD,d and
C. Keith Ozaki, MD,a Boston, MA

Background. Short-term changes in preoperative nutrition can have profound effects on surgery-related
outcomes such as ischemia/reperfusion injury in preclinical models. Dietary interventions that lend
protection against stress in animal models (eg, fasting, dietary restriction [DR]) impact adipose tissue
quality/quantity. Adipose tissue holds high surgical relevance because of its anatomic location and large
tissue volume, and it is ubiquitously traumatized during surgery. Yet the response of adipose tissue to
trauma under clinically relevant circumstances including dietary status remains poorly defined. We
hypothesized that preoperative diet alters the adipose tissue response to surgical trauma.
Methods. A novel mouse model of adipose tissue surgical trauma was employed. Dietary conditions (diet-
induced obesity [DIO], preoperative DR) were modulated before application of surgical adipose tissue
trauma in the context of clinically common scenarios (different ages, simulated bacterial wound
contamination). Local/distant adipose tissue phenotypic responses were measured as represented by gene
expression of inflammatory, tissue remodeling/growth, and metabolic markers.
Results. Surgical trauma had a profound effect on adipose tissue phenotype at the site of trauma. Milder
but significant distal effects on non-traumatized adipose tissue were also observed. DIO exacerbated the
inflammatory aspects of this response, and preoperative DR tended to reverse these changes. Age and
lipopolysaccharide (LPS)-simulated bacterial contamination also impacted the adipose tissue response to
trauma, with young adult animals and LPS treatment exacerbating the proinflammatory response.
Conclusion. Surgical trauma dramatically impacts both local and distal adipose tissue biology. Short-
term preoperative DR may offer a strategy to attenuate this response. (Surgery 2013;153:584-93.)
From the Departments of Surgerya and Pathology and Laboratory Medicine,b Brigham and Women’s Hospital,
Harvard Medical School; and the Center for Cancer Computational Biology,c Dana Farber Cancer Institute;
and the Department of Genetics and Complex Diseases,d Harvard School of Public Health, Boston, MA
DIETARY RESTRICTION (DR), or reduced food intake
without malnutrition, is best known for lifespan ex-
tension in a variety of experimental organisms,1

but can also protect against a number of inflamma-
tory injuries. Recent data from animal models
clearly indicate that even short-term preoperative
dietary interventions, including 2–4 weeks of DR,
6 days of protein deficiency, or 3 days of fasting, of-
fer protection against organ injury associated with
operative ischemia–reperfusion injury.2-8 DR thus
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holds potential as a clinically relevant strategy to al-
ter the mammalian response to acute stress such as
surgical trauma.2-9

In addition to its role in energetics, mammalian
adipose tissue is now recognized as an active partic-
ipant in homeostasis and immune function via a
variety of endocrine and signaling networks.10-13 Al-
though obesity broadly correlates with metabolic
and cardiovascular disorders, qualitative adipose tis-
sue factors seem to be important determinants of
health and disease beyond simple body mass in-
dex.14-16 Dietary intake serves as a key determinant
of adipose tissue quantity and quality in humans.16

Importantly, the plasticity of adipose tissue in re-
sponse to food intake makes it a prime potential
mechanistic vehicle for dietary effects.11,17

Owing to anatomic proximity and relatively
large tissue volume, adipose tissue is ubiquitously
traumatized in operative procedures. Links be-
tween adipose tissue biology and clinically relevant
surgical outcomes are emerging.18 For instance,
exacerbated adipose tissue interleukin-6 release
in obese surgical patients correlates with
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perioperative insulin resistance.18 However, the im-
pact of surgical trauma itself on adipose tissue biol-
ogy, and how this can be modulated by diet,
remains largely unknown.

Leveraging a controlled murine model of typi-
cal operative trauma to adipose tissue, we sought to
understand the impact of preoperative diet on the
response to surgery and its modulation by clinically
relevant variables, including age and bacterial
wound contamination. We found that surgical
trauma upregulates markers of inflammation, ma-
trix remodeling, and angiogenesis, and that pre-
operative diet modulates this response.

MATERIALS AND METHODS

Murine surgical trauma model, local and distant
adipose tissue collection. Male C57BL/6J mice
(Jackson Laboratory, Bar Harbor, ME) were main-
tained on a 12-hour light–dark cycle for $1 week
pre-experiment and throughout the experiments,
and received water and chow ad libitum according
to the dietary parameters discussed below. Exper-
iments were performed according to protocols
approved by the Institutional Animal Care and
Use Committee and complied with the Guide for the
Care and Use of Laboratory Animals (National Insti-
tutes of Health Publication No. 85-23, Revised
1996).

Operative procedures (including harvests) were
performed aseptically, with general continuous
isoflurane inhalant anesthesia (1–2% isoflurane
mixed with 1 L/min oxygen), using a Zeiss binoc-
ular OPMI-MD Surgical Microscope (Carl Zeiss,
Jena, Germany). A 2 3 1-cm L-shaped incision was
made on the left flank of the animal. After
retracting the skin, a 5 3 5-mm square of ;2
mm-thick subcutaneous adipose tissue was har-
vested using sharp dissection and snap frozen in
liquid nitrogen (control baseline adipose tissue). A
smaller 3 3 3-mm square of ;2 mm-thick adipose
tissue was harvested for formalin fixation. Simple
direct pressure was applied for hemostasis. The
following standard surgical manipulations were
then applied to the remaining adipose tissue in
the surgical field. First, blunt dissection into the fat
was performed by spreading and closing a hemo-
stat instrument 10 times. This was followed by
cauterizing a 4 mm length along the edge of the
adipose tissue using a handheld electrocautery
instrument. The skin incision was then closed
with 6-0 absorbable suture, and the mouse was
allowed to recover.

Twenty-four hours later, mice were again anes-
thetized. Adipose tissue was first harvested from
the right flank of the animal after the same
protocol outlined, representing harvest from a
remote adipose tissue site. The left flank operative
site was then reopened and the remaining adi-
pose tissue from the site of the initial surgical
manipulations (surgically traumatized adipose tis-
sue) was harvested and snap frozen in liquid
nitrogen.

Interventions to model clinical circumstances.
Dietary perturbations. Beginning at 6 weeks of age,
animals received either a 10 kcal% fat standard
chow diet (normal chow [NC]; D12450B; Research
Diets Inc, Indianapolis, IN), a 60 kcal% fat diet
(diet-induced obesity [DIO]; D12492; Research
Diets Inc), or a high-fat diet switched to NC
(DR) 3 weeks before surgical trauma.

Age. Two distinct age group cohorts (11- and 26-
week-old mice representing young adult and
middle-aged animals, respectively) were investi-
gated to define the impact of age on the adipose
tissue response to operative trauma under various
conditions.

Mimicry of local wound infection. Polysaccharide
(LPS; 5 mg in 40 mL 40% w/v pluronic gel) was
placed in the traumatized surgical field immedi-
ately before closure.

Tissue analyses. Total RNA was isolated from
fresh frozen adipose tissue (RNeasy Mini Kit;
Qiagen, Hilden, Germany), quantified with
NanoDrop-1000 (Thermo Scientific, Waltham,
MA), and qualified via Agilent 2100 Bioanalyzer
(total RNA nanochip; Agilent, Santa Clara, CA).
Quantitative real-time polymerase chain reaction
(PCR; RT2 qPCR Primer Assay, SYBR Green, SABio-
sciences, Frederick, MD) was completed for se-
lected mediators (Supplemental Table I). The
real-time PCR assays for the selected genes were
performed on a 7500 Sequence Detection System
(Applied Biosystems, Foster City, CA) by using
400 nmol/L of forward and reverse primers, a
10-ng cDNA sample, and RT2 qPCR SYBR Green/
ROX Master Mix (Qiagen) in a 25-mL reaction vol-
ume. Each target gene was simultaneously run with
housekeeping genes (Hsp90ab1, Hprt1, and
18SrRNA) on all investigated specimens. The com-
parative computed tomography method was used
for experimental setup and data analysis. To mini-
mize variations in sample loading and make com-
parisons across multiple experiments, results
were expressed as mRNA fold induction normal-
ized to the average expression of housekeeping
genes Hsp90ab1 and Hprt1 in individual animals;
18S rRNA expression was not used owing to high
variation. The normalized values were then stan-
dardized to the mean baseline expression of the
housekeeping genes across all animals.
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Histologic sections of adipose tissue in the
vicinity of the surgical site were generated from
formalin-fixed, paraffin-embedded tissue from
mice in all treatment groups. Sections were stained
with Masson trichrome.

Statistical analyses. Each of the 12 total treat-
ment groups had 6 animals per cohort, with
individual animals generating their own baseline,
ipsilateral surgically traumatized, and contralateral
(remote from trauma) adipose tissue specimens.
Fold induction from baseline was then deter-
mined, and is expressed as the mean values ±
standard error of the mean. Clinically meaningful
comparisons were then completed for specific
scenarios, and gene expression identified as up-
or downregulated if P < .05. Differential expres-
sion was determined using the LIMMA package.19

All P values reported were corrected for multiple
comparisons testing using Benjamini and Hoch-
berg correction.20 We also performed multivariate
analyses using a P < .01. Principle component anal-
ysis was performed across all selected genes, and
Euclidean distances between all sample pairs
were calculated using the first 3 principle compo-
nents. All statistical and clustering analyses were
performed using R and Bioconductor.21

RESULTS

Effect of high-fat diet (DIO) and short-term
preoperative DR on baseline adipose tissue phe-
notype. Animals were placed on a purified high-fat
diet containing 60% calories from fat (DIO group)
from the age of 6 weeks until surgery at 26 weeks of
age (middle-aged mice). Animals on a purified NC
diet with 10% calories from fat served as a control
(NC group). To simulate a clinically feasible pre-
operative DR regimen, DIO animals were placed
on NC 3 weeks before surgery (DR group). Al-
though allowed ad libitum access to control chow,
these animals lost weight (15.7% ± 4.5%) relative
to the DIO group over the 3-week preoperative
period. To evaluate the effects of age, the same 3
groups were subjected to surgery at 11 weeks of age
(young adult mice), resulting in NC and DIO
groups on control and high-fat diets, respectively,
for 5 weeks, and a DR group on a high-fat diet for 2
weeks and control chow for 3 weeks before surgery.
Whereas the 11-week-old NC and DR groups had a
similar weight (28.1 vs 27.4 g, respectively; P = .53),
26-week-old animals that had undergone DR still
had substantially higher weights (37.7 g) than
NC controls (31.0 g; P = .0006).

We first surveyed a host of mediators linked
to adipose tissue homeostasis and the response to
surgical trauma via quantitative reverse transcriptase-
PCR(Supplemental Table I) fromadipose tissue sam-
plesobtained at baseline as a functionofdiet and age.
Employing a statistical threshold of P < .05, dietary
manipulations significantly impacted adipose tissue
gene expression (Table I). In 26-week-old DIO ani-
mals (third data column), the proinflammatory and
anorectic adipokine Lep was the most highly upregu-
lated gene observed at baseline. Some additional
proinflammatory markers such as Tnf and Icam1
were also significantly upregulated, whereas others
were significantly downregulated (Il1b, Il6). Expres-
sionof the anti-inflammatory cytokine Il10 and the al-
ternatively activated macrophage marker Mgl1 were
downregulated by DIO. Similar trends were seen for
DIO in the 11-week-old animals (Table I, second
data column), although the magnitude of the effects
were smaller likely owing to the shorter time period
on the high-fat diet (5 vs 20 weeks). Interestingly,
there were a number of age-dependent changes ob-
served on the control between young and middle-
aged animals (Table I, first data column), including
a decrease in some proinflammatory markers (Tnf,
Icam1, Lep) and an increase in anti-inflammatory
markers (Mgl1, Il10).

DR for 3 weeks pushed the adipose tissue
phenotype back toward the NC baseline for 13 of
20 significant genes changed by the DIO diet at
baseline in 26-week-old mice, including Lep, Il1b,
Il6, Mgl1, Il10, and Mmps (Table I). The results
were more profound still in young adult mice, in
which 12 of 14 significant changes upon DIO
mice were reversed by DR.

Impact of diet and surgical trauma on adipose
tissue gene expression. Each of the groups under-
went a defined local trauma to subcutaneous adipose
tissue designed to mimic a realistic operative proce-
dure. One day later, adipose tissue from the local
surgical site and a remote site on the opposite flank
were harvested. Quantitative reverse transcriptase-
PCR revealed induction of all pro- and anti-
inflammatory mediators examined except Vcam1
andMgl1 (Table II) whenpreoperative adipose tissue
fromeach animal was utilized as its own baseline. Ad-
ipose tissue–derived hormones Adipoq and Lep were
both generally downregulated by operative trauma.
Mmp2 was modestly downregulated in younger ani-
mals, whereas the other matrix remodeling media-
tors Tgfb1 and Ctgf were widely upregulated. Full
results are detailed in Supplemental Figs 1–4. Al-
though more subtle, both age groups did show a
modest systemic response evidenced by alterations
in gene expression at the remote tissue site
(Supplemental Table II). Adipose tissue from 26-
week-old DIO animals yielded an exaggerated proin-
flammatory response signature (increased Il1b and



Table I. Fold induction by age and dietary manipulations for baseline adipose tissue

Gene
NC 26 vs
11 weeks

DIO 11 weeks vs
NC 11 weeks

DIO 26 weeks vs
NC 26 weeks

DR 11 weeks vs
DIO 11 weeks

DR 26 weeks vs
DIO 26 weeks

Proinflammatory
Tnf �1.9 — 2.4 �1.4 1.5
Il1b 1.9 — �3.9 1.9 3.3
Ccl2 2.1 — �1.9 —
Il6 1.8 — �3.3 — 2.1
Icam1 �5.6 �1.1 4.5 — —
Vcam1 — — — 1.3 —
Cd68 1.4 — �1.4 — 1.6
Mgl1 1.7 �1.4 �2.9 1.6 1.9

Anti-inflammatory
Il10 1.4 1.5 �2.4 1.6 1.6

Adipose-derived hormones
Adipoq �3.9 — 3.1 — —
Lep �11.4 3.5 50.0 �4.7 �4.1

Matrix remodeling
Mmp2 1.5 �1.5 �2.7 1.7 2.0
Mmp9 — �4.3 �10.3 2.8 6.0
Tgfb1 �5.2 — 4.1 — —
Ctgf — 1.6 2.7 �1.5 �2.2

Pathogen recognition, activation of innate immunity
Tlr4 �3.7 — 2.5 1.2 —

Angiogenesis
Pgf �1.4 1.9 3.1 �1.9 —
Flt1 �5.0 — 5.0 — �1.9

Aldosterone signaling
Nr3c2 �6.9 — 5.7 — —
Hsd11b2 — �1.4 �1.3 1.3 —
Agtr1a �3.7 �1.4 2.5 1.3 1.2
Agtr1b �3.6 �1.9 — 1.9 —
Ace �3.9 �1.7 — 1.7 —
Cyp11b2 �1.4 — — — —
Sgk1 — �1.2 3.6 1.2 �1.3

P < .05; --- indicates lack of statistical significance.
DIO, Diet-induced obesity; NC, normal chow.
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Il6, although relatively little impact on Tnf) com-
pared with NC controls. Short-term DR also signifi-
cantly attenuated the Il1b (P = .002) and Il6 (P =
.015) induction in this age cohort (Fig 1). Four other
genes were significantly differentially regulated (Adi-
poq, Mmp9, Tgfb1, Ctgf) by DR versus DIO, all in the
direction of expression toward the corresponding
NC group. Indeed, of all the genes tested, DR
resulted in changes from DIO in the direction of
the NC group in a large portion of the genes tested
(Table II, * indicated data cells). As a control for dif-
ferences in baseline expression (Table I), normaliza-
tion of gene expression after surgical trauma to the
corresponding NC group yielded similar results
(Supplemental Fig 5).

In separate cohorts of animals, very low-dose
LPS was applied to the surgical site to mimic low-
grade bacterial wound contamination. Low-dose
local LPS further potentiated gene perturbations
beyond the surgical trauma itself in 11-week-old
(Ccl2 and Icam1 upregulation; Cd68 and Mgl1
downregulation), and 26-week-old (Tnf, Il1b, Ccl2,
Il6, Mmp9, Tgfb1, and Vcam1 upregulation; Mgl1
downregulation) animals. As discussed, DR
brought the expression patterns in response to sur-
gical trauma back toward those seen in the NC set-
ting for several key mediators (Table II).

Global adipose tissue gene expression analyses.
Figure 2 depicts principle component analyses of
the two age groups. Although there were subtle dif-
ferentials in Euclidean distances owing to the die-
tary perturbations, the greatest determinant of
position was presence or absence of surgical
trauma. LPS incited specific gene expression



Table II. Fold induction of adipose tissue gene expression at surgical trauma site

Gene

11 weeks 26 weeks 11 weeks + LPS 26 weeks + LPS

NC DIO DR NC DIO DR NC DIO DR NC DIO DR

Proinflammatory
Tnf 23.8 7.2 20.1* 11.9 14.4 8.1* 103.5 107.1 114.6 290.3 43.8 48.2*
Il1b 278.7 192.7 125.5 35.1 1177.6 79.2* 1,225.2 2,261.0 1,265.9* 798.2 1,406.7 1,183.5*
Ccl2 47.2 13.9 33.8* 24.9 35.7 20.3* 99.0 80.5 133.7* 107.4 39.3 51.1*
Il6 26.4 56.2 44.3* 20.9 551.9 34.4* 228.3 448.8 331.4* 69.9 250.1 208.0*
Icam1 2.8 2.5 2.6* 4.3 2.7 3.0* 7.0 9.6 5.9 82.4 8.3 6.7
Vcam1 — — — — — — — — — — 2.2 2.1
Cd68 5.1 3.3 2.7 2.4 2.8 2.6* 2.1 2.3 3.3 2.5 2.7
Mgl1 — — — — — — �16.6 �15.4 �12.7 �37.6 �10.3 �23.4*

Anti-inflammatory
Il10 5.4 6.1 3.0 3.0 4.5 6.3 4.8 6.7 5.8* 3.2 5.1 3.8*

Adipose-derived hormones
Adipoq �3.8 �2.4 �3.4* �2.6 — �2.6 �5.2 �4.4 �6.7* — �2.8 �4.1
Lep �4.1 �3.8 �3.2 — — — �7.3 �6.8 �5.4 3.2 �4.5 —

Matrix remodeling
Mmp2 �2.4 — �2.4 �2.2 — — — — — — — —
Mmp9 — 2.0 — — 18.7 — 18.4 93.8 17.0* 5.9 22.9 9.1*
Tgfb1 2.8 2.4 2.4 3.6 2.2 3.0* — 2.4 3.2 21.9 — —
Ctgf 5.3 4.9 7.5 6.8 3.2 5.0* 3.5 3.0 3.1* 4.0 2.3 3.9*

Pathogen recognition, activation of innate immunity
Tlr4 2.2 2.1 — 2.5 2.2 2.2 — — 2.5 12.1 — —

Angiogenesis
Pgf — — 2.0 3.1 — — 5.0 3.6 3.0 4.1 2.4 4.3*
Flt1 — — — — — — — — — 4.2 �2.2 —

Aldosterone signaling
Nr3c2 �3.1 — �2.8 — — — �4.2 �4.1 �3.6 3.8 �4.4 �5.0
Agtr1a — — — — — — — — — 5.0 — —
Agtr1b �4.0 — �4.1 — — — �2.3 — — — —
Ace �3.5 — �3.1 — �1.9 — �3.3 �2.1 �2.6* 2.8 — �2.8
Cyp11b2 — — — — — — — — 2.2 — — —
Sgk1 — — — — — — — — — 5.2 — —

Oxygen sensing
Nox4 — — — — — — �2.2 �2.1 — — — —

*Change in direction of gene expression toward the NC level induced by DR.
Fold changes expressed relative to day 0 baseline for each individual animal. Significance: P < .05; --- indicates lack of statistical significance.
DIO, Diet-induced obesity; LPS, lipopolysaccharide; NC, normal chow.
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signatures subtly different from those owing to the
surgical trauma alone, and these were most appar-
ent in the older animals.

Impact of diet and surgical trauma on adipose
tissue histology. In the 26-week-old group at base-
line, mice fed a high-fat diet showed larger adipo-
cytes with thinner interlobar septae. DR partially,
but incompletely, restored normal architecture.
After surgical trauma, tissue from mice fed a
normal diet exhibited prominent inflammation,
edema, and fat necrosis. Surprisingly, these inflam-
matory changes were significantly mitigated in the
context of a DIO high-fat diet, and dietary reversal
before surgery only partially restored the baseline
inflammatory phenotype. Exposure to LPS
magnified the response to operative intervention
in mice fed a normal diet, but showed modest
relative effect in mice that had been fed a high-fat
diet with or without DR.

DISCUSSION

We used a mammalian model to analyze the
effects of surgical trauma on adipose tissue gene
expression and histology, and the ability of diet to
modulate these phenotypes. In terms of global
changes in gene expression, principle component
analyses revealed that the surgical trauma itself
contributed disproportionately to observed
changes in gene expression. Nonetheless, different
preoperative diet had significant effects. We found



Fig 1. Selected adipose tissue gene expression patterns in 26-week-old mice under 3 different dietary conditions and
subjected to operative trauma. Fold induction is presented relative to the baseline value of the corresponding individual
animals in that group.

Fig 2. Principle component analysis of the assayed genes for the young and old age groups. Red = normal chow; blue =
diet-induced obesity; green = dietary reversal; spheres = animals baseline (day 0) and after operative trauma (day 1); squares
= animals receiving LPS in addition to the operative trauma. Although the dietary perturbations and LPS modestly im-
pacted global gene expression, the operative trauma itself dominated, in both young and old mice. PC-1, PC-2, and PC-3
represent the first, second, and third principle components, correspondently.
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that increased adiposity induced by high-fat feed-
ing exacerbated transcriptional changes in adipose
tissue subject to surgical trauma. Furthermore, we
showed that these changes could be mitigated by 3
weeks of feeding on a low-fat control diet before
surgery, mimicking a mild DR with potential clin-
ical relevance. Note that the dietary perturbation
was switching from a high-fat diet to a NC in mice,
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and thus differs subtly from many of the traditional
definitions of DR. However, these data provide
proof of principle that changes in adipose tissue
induced by short-term dietary modification may
contribute to its ability to improve outcomes after
operative trauma. It is also acknowledged that
practical issues may limit direct application of
these interventions to the surgical patient. How-
ever, the findings support further investigation
into these mechanisms so that realistic therapeutic
strategies can be defined.

The response of organs to trauma such as
surgery has undergone intensive interrogation for
decades because a variety of clinically significant
sequelae hold clear links to this host response.22

These sequelae range from local reactions such
as vascular restenosis to systemic multiple organ
dysfunction and failure.23-25 Humans typically
have 20–30% body fat, and adipose tissue depots
are directly traumatized in most operative proce-
dures, yet this organ’s response to trauma has
not previously been well-characterized. This re-
sponse is clearly relevant for soft tissue augmenta-
tion techniques such as fat grafting.26

Additionally, there is expanding recognition of ad-
ipose tissue-based signaling networks in a variety of
clinically relevant pathophysiologies.10-12,27-30

Early observations linking adipose tissue pheno-
types to the response to surgery have been made.
Even minimal trauma such as catheter insertion
has been reported to result in cytokine release
from subcutaneous adipose tissue.31 Gletsu et al18

studied the adipose tissue of normal and obese pa-
tients undergoing surgery and concluded that cir-
culating Il6 concentrations both at baseline and
after operation are positively correlated to abdom-
inal adipose tissue volume and are exaggerated in
severely obese persons.18

A premise of our approach builds on the
clinical observation that adipose tissue quality
rather than quantity in part determines its impact
on human health. Key surgical outcomes have not
consistently correlated with simple obesity,32 and
there is increasing recognition of metabolically
healthy14 and unhealthy adipose tissue.33,34 By
testing two age groups and cohorts of animals
that consumed a high-fat ‘‘Western’’ diet with or
without mild, short-term DR in comparison with
a low-fat control diet, we were able to analyze
the response of varying baseline adipose tissue
phenotypes in a homogenous genetic back-
ground. At baseline, the proinflammatory pheno-
type that we observed associated with the DIO
mouse model correlated with previous cell sorting
studies of these animals.35 These animals were
generally ‘‘primed’’ for a hyperacute response to
the operative trauma.

We explored the effect of short-term DR, an
emerging strategy to attenuate the hyperacute
response to ischemia–reperfusion injury associated
with surgical trauma.3,5,36 Although defined as re-
duced food intake with adequate nutrition, exper-
imental DR regimens vary widely in terms of
dietary composition, temporal aspects of food con-
sumption, duration of restriction, and percentage
of caloric or nutrient restriction. Most DR experi-
ments are performed on lean, young adult ani-
mals; restriction of total food intake in the range
of 30–40% is typically calculated from the amount
eaten by ad libitum fed control animals.37 It is
much more challenging to define caloric content
and dietary composition of elective surgery candi-
dates, who are often obese individuals ingesting
relatively high-calorie/high-fat diets. It is also not
clear if calculating the percent restriction in this
context should be based on current dietary intake
or that normalized to a corresponding lean indi-
vidual. Thinking ahead toward clinical translation,
we chose a mild restriction consisting simply of a
return to a low-fat diet for the period of 3 weeks
in a DIO model. Importantly, this nontraditional
preoperative DR showed modest reversibility of
the DIO-induced changes, particularly in the
young adult group. Histologic assessment of adi-
pose tissue also indicated the ability of short-term
DR to partially restore the normal architecture.
However, more research is needed to define tem-
poral aspects of DR and particular dietary compo-
nents (eg, total calories and weight change,
change in fat content) that are important for this
effect, and the biologic mediators.

Interestingly, older age was generally associated
with an attenuated inflammatory gene response to
operative trauma (less Il1b, Ccl2, Il6). This is para-
doxical in the sense that aging is typically associ-
ated with an overall increase in inflammatory
processes. The answer to this apparent paradox
may lie in the difference between chronic, steady-
state inflammation, which increases with age, and
the ability of the innate immune system to mount
an acute inflammatory response, which declines
with age. The importance of the latter is empha-
sized by the heightened susceptibility of younger
patients to morbidity/mortality associated with
acute inflammatory reactions such as those associ-
ated with septic shock. Here, DR attenuated preop-
erative and postoperative DIO-induced changes in
gene expression in both age groups, although DR
effects at baseline were stronger in the young adult
group.
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The effect of DR on adipose tissue histology after
surgical trauma was similarly paradoxical. Despite
evidence of increased inflammation in the adipose
tissueof theDIOmodel after operative traumaat the
level of gene expression, DIO seemed to protect
adipose tissue from infiltration of leukocytes,
edema, and necrosis after operative trauma on a
histologic level, an apparently protective effect that
was mitigated by DR. One possible explanation for
this is that the infiltrating leukocytes are qualitatively
different between control and DR groups, promot-
ing inflammation in the former while helping to
suppress it in the latter. In this context, leukocytes
such as macrophages may serve the beneficial func-
tion in traumatized tissue of clearing out cellular
debris and thus preventing further activation of the
immune system. Another possibility is that increased
adiposity can be beneficial in some cases. Consistent
with this possibility, increased adiposity is associated
with better outcomes in some surgical scenarios,
such as carotid endarterectomy.38 Future studies are
required to resolve these paradoxical findings.

We also modeled the impact of a low-grade
bacterial wound contamination. For complex op-
erative procedures, low-grade wound bacterial con-
tamination rates may be as high as 80%.39 Even
beyond the dramatic gene perturbations observed
with trauma, LPS administration was associated
with even further inflammatory mediator upregu-
lation (in both NC and DIO animals). LPS did
have a clear downregulatory effect on Mgl1.

Owing to its plasticity and its ability to modulate
inflammatory status by secretion of pro- and anti-
inflammatory adipokines including lep and adipoq,
adipose tissue stands as a prime interventional tar-
get.11,40,41 Diet-induced changes in quantitative
and qualitative aspects of adipose tissue phenotype
occur rapidly in the context of reduced calorie in-
take, for example, during fasting or DR. Although
primarily thought of as a depot for energy storage,
adipose tissue changes similar to DR can also occur
in the absence of reduced calorie intake, for exam-
ple, in the context of a protein- or essential amino
acid-deficient diet.2 Furthermore, adipose tissue
phenotypes can be modulated by pharmaceutical
compounds in the absence of dietary interven-
tions. Ikeoka et al42 infused an intravenous lipid-
heparin compound to increase nonesterified fatty
acids in humans, leading to adipose tissue cytokine
production. The multitude of emerging pharma-
cologic compounds that impact adipose tissue biol-
ogy might have a role in altering the mammalian
response to trauma.41

Despite rigorous adherence to standardized an-
imal acquisition, care, anesthetic, and tissueharvest,
four of the baseline samples for the LPS NC cohort
were outliers when examined via principle compo-
nent analysis (Fig 2). These results are included for
transparency regarding the potential for variation
in our approach, a reality likely to be even more rel-
evant in a genetically and environmentally hetero-
geneous human patient population. Despite this
subtle baseline phenotypic differential, however,
the response to operative trauma and LPS adminis-
tration was similar to the other LPS-treated animals.

Other limitations to the data presented are
acknowledged. The relatively minor trauma in-
flicted in this mouse model may not represent well
the variety of human operative interventions, be-
cause many procedures expose adipose tissue for
several hours. Only an early time point was exam-
ined, and over time there may be important differ-
ential adaptations to the trauma among various
conditions both in terms of gene expression and
histology. However, we designed the experiments to
assay short-termRNAdynamics at a time point when
thebiologic and clinical response to trauma tends to
be high. Specific cellular mediators and confirma-
tory protein quantifications are not offered, but the
intention was to broadly yet accurately portray the
impact of clinically relevant conditions on periop-
erative adipose tissue phenotypic signatures. We
employed LPS rather than live bacteria to better
control conditions for modeling wound contami-
nation at the time of surgery; organisms such as
Gram-positive cocci would likely incite other host
mediators. Finally, the influence of numerous clin-
ically relevant scenarios such as diabetes is not
considered, but description of this investigative
approach and the fundamental dynamics herein
should accelerate such work in a murine platform.
As is frequently the case with mouse models, recon-
ciliation of rodent nutrition and lifespan with the
human condition is challenging, but this mouse
model at least offers a tool to dissect common
mammalian biologic mechanisms.

As clinical consequences are increasingly linked
to adipose tissue driven signaling, the current
results point to potential approaches to alter the
outcomes of elective operative procedures.
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