
Journal of Surgical Research 134, 238–251 (2006)
Prometheus’ Challenge: Molecular, Cellular and Systemic Aspects
of Liver Regeneration

Payam Samareh Pahlavan, M.D.,*,†,1 Robert E. Feldmann, Jr., Ph.D.,*,‡ Christos Zavos, M.D.,§
and Jannis Kountouras, M.D., Ph.D.§

*Department of Physiology and Pathophysiology,†Department of Internal Medicine, University of Heidelberg, Heidelberg, Germany;
‡Department of Psychiatry, Johns Hopkins University, School of Medicine, Baltimore, Maryland, United States; §Department of Medicine,

Second Medical Clinic, Aristotle University of Thessaloniki, Ippokration Hospital, Thessaloniki, Greece

Submitted for publication July 12, 2005

doi:10.1016/j.jss.2005.12.011
The fascinating aspect of the liver is the capacity to
regenerate after injury or resection. A variety of
genes, cytokines, growth factors, and cells are in-
volved in liver regeneration. The exact mechanism of
regeneration and the interaction between cells and
cytokines are not fully understood. There seems to
exist a sequence of stages that result in liver regener-
ation, while at the same time inhibitors control the
size of the regenerated liver. It has been proven that
hepatocyte growth factor, transforming growth factor,
epidermal growth factor, tumor necrosis factor-alpha,
interleukins -1 and -6 are the main growth and pro-
moter factors secreted after hepatic injury, partial
hepatectomy and after a sequence of different and
complex reactions to activate transcription factors,
mainly nuclear factor kappaB and signal transduction
and activator of transcription-3, affects specific genes
to promote liver regeneration. Unraveling the com-
plex processes of liver regeneration may provide novel
strategies in the management of patients with end-
stage liver disease. In particular, inducing liver regen-
eration should reduce morbidity for the donor and
increase faster recovery for the liver transplantation
recipient. © 2006 Elsevier Inc. All rights reserved.
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Many types of liver diseases, including hepatitis and
cirrhosis, are associated with some degree of liver re-
generation. Partially this is compensatory as the liver
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attempts to restore its mass lost as a consequence of
pathologic processes. Nevertheless, the disease itself
may be associated by elevations of transcription factors
and cytokines that induce proliferation of hepatocytes
and non-parenchymal cells. These pathophysiologic re-
sponses of the liver may aggravate the pathologic pro-
cess resulting in augmented fibrogenesis in cirrhosis
and the accumulation of mutations in progenitor cells
and proliferating hepatocytes, finally leading to the
development of hepatocellular carcinoma (HCC) [1].

The incidence of HCC, cirrhosis and other end-stage
liver diseases (ESLD) is increasing worldwide [2]. More-
over, cerebral edema, sepsis, and multiple organ fail-
ure are the complications of patients with ESLD or acute
liver failure. Orthotopic liver transplantation (OLT) is
the treatment of choice for helping those patients who
are unlikely to recover spontaneously to regain quickly
and effectively. Unfortunately, the shortage of cadaver
liver grafts is increasing, thereby OLT is not always
possible [3, 4]. To solve this problem, living donor liver
transplantation (LDLT) is one of the strategies cur-
rently used to increase the donor pool [5]. The restora-
tion of the liver tissue in both donor and recipient is
based on the innate characteristic and capacity of liver
to regenerate. LDLT affects both donor and recipient.
Inducing liver regeneration should reduce morbidity
for the donor and increase faster recovery for the re-
cipient. Various molecular and cellular pathways are
involved in this process, and novel strategies to induce
liver regeneration in both the donor and the recipient
have been developed.

Regeneration of Liver

The liver has unusual regeneration properties after

partial hepatectomy or toxic injury. Partial hepatec-
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tomy, representing the model that most clearly dem-
onstrates the regenerative capacity of the liver, was
first described by Higgins and Anderson in 1931 [6]. It
has been observed that after a partial hepatectomy in
which two-thirds of a rodent liver, including the medial
and left lateral lobes, are removed intact, the remnant
liver enlarges until the liver mass is restored where-
upon the process stops. The term regeneration is not
biologically correct because the removed lobes or seg-
ments do not grow back. Instead, restoration of liver
mass occurs by the compensatory hyperplasia of the
cells in the remaining lobes. This suggests that hepatic
growth induced by tissue loss is governed by functional
rather than anatomical factors. Whatever the nature of
these functional controls, they appear to be precise,
because growth ceases when the liver regains its orig-
inal weight. In addition, growth does not become un-
regulated or autonomous after repeat partial hepatec-
tomies. Therefore, liver “knows” when to start and
when to stop growing, although it is still difficult to
understand precisely how all these regulatory mecha-
nisms are coordinated in this regulatory process of the
liver [7].

Rapid changes in gene expression and activation of
receptors and transcription factors occur immediately
after partial hepatectomy. Several potential signaling
stimuli are released in the liver or in the circulation
after the loss of hepatic parenchyma [8]. Liver is com-
posed of different cells including hepatocytes that ac-
count about 60% of hepatic cells, endothelial cells,
Kupffer cells and “Oval” cells (a population of peripor-
tal cuboidal cells with ovoid nuclei believed to repre-
sent liver stem cells). Liver regeneration following par-
tial hepatectomy (70% resection) usually does not
involve the activation of liver precursor (“stem”) cells
[7]. Instead, liver mass is replenished by the prolifer-
ation of adult hepatocytes (mainly tetraploid cells) [9].
However, liver epithelial cells with the capacity to dif-
ferentiate into hepatocytes or biliary ductal cells have
been recently identified in the bile ductules (canals of
Herring) of livers of adult humans and animals. These
cells, at least for a period of time during development,
express markers of both hepatocytes and biliary cells.
Ductular cells appear to form a reserve compartment
capable of generating mature hepatocytes and bile duct
cells after massive necrosis, toxic injury, and carcino-
genesis or in any condition in which hepatocyte prolif-
eration is impaired or slowed by the injury [9]. In all
these cases there is proliferation of an “oval cell com-
partment” constituting of cells with different precursor
capabilities at different stages of maturation originat-
ing from ductular cells. The oval cells are heteroge-
neous. Nevertheless, the proliferation of such cells is
readily apparent in partially hepatectomized rats
given acetylaminoazobenzene [9]. In humans, oval

cells participate in the repopulation of the liver after
acute massive necrosis [7]. It is believed that even after
resection of an entire lobe of liver, the organ will sub-
sequently repair itself over a period of months to com-
pletely recover its previous structure. The regeneration
is evaluated by a mixture of different variables includ-
ing liver size, function and histology [10].

AT FUNCTIONAL LEVEL

A functional regenerated liver should perform the
duties of a normal liver including major roles in main-
taining normal blood sugar levels, manufacturing pro-
teins including albumin and clotting factors, maintain-
ing several biochemical pathways that permit
detoxification or breakdown of accumulated toxins and
manufacturing bile. If the regenerated liver does all
these works properly in an otherwise healthy individ-
ual, it is called a functional regenerated liver. It has
been proven that some factors affect the regeneration
processes and the duration needed for the liver to be-
come functional. These factors include the extent of
resection, underlying liver parenchymal disease and to
some extent, age and portal pressure [11–13].

In animal model, DNA synthesis starts 12 to 16 h
after the standard partial hepatectomy (68–70% resec-
tion) and peaks 24 to 48 h. The onset of mitosis follows
6 to 8 h later reaching its maximum 48 h after surgery.
Three days after partial liver resection, the original
organ mass is almost restored. However, at this stage
of liver regeneration, hepatic histology differs substan-
tially from normal. Hepatocytes are grouped into non-
vascularized clusters of 12 to 15 cells, and the amount
of extracellular matrix (ECM) is clearly reduced as a
consequence of hepatocyte proliferation without con-
comitant ECM synthesis. After this time point, hepa-
tocyte proliferation decreases and stellate cells migrate
into the clusters. At the same time, new vascular
branches are formed. Finally, normal liver histology
and function is re-established 8 to 10 days after sur-
gery [7].

In general, considering size and histopathology in
the liver under regeneration, liver functions are re-
stored within 2 to 3 weeks in patients with normal
livers. However, hyperbilirubinemia persists longer in
patients with chronic hepatitis and cirrhosis [14]. In
the first month, normal livers usually regenerate at
least twice as rapidly as livers with underlying dis-
eases with the same resection rates. Normal livers
reach plateau levels within 1 to 2 months regardless of
the massiveness of resection but regeneration takes 3
to 5 months in livers with underlying diseases [15].

AT CELLULAR LEVEL

As already mentioned, liver is composed of hepato-
cytes, Kupffer cells, epithelial cells, stellate (Ito) cells,

and stem cells but its regeneration basically involves
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the activation of adult hepatocytes and possibly stem
cells [7]. These latter types of cells belong to the family
of adult tissue stem cells that have been discovered in
various human tissues such as bone marrow, muscle,
neural tissue, skin, or fat. Stem cells usually distin-
guish themselves from other cells through being not
necessarily terminally differentiated, owning the capa-
bility to continuously proliferate and self-renew and,
engendering differentiated progeny of a committed
phenotype (potency) [16]. They exhibit either symmet-
ric or asymmetric mitotic activity which is necessary to
generate such progeny and for self-maintenance. Dur-
ing development, embryonic and fetal stem cells serve
the purpose of generating the more than 200 different
cell types of the human body. The occurrence of stem
cells in adult tissues, however, probably supports the
delivery of differentiated cells during times of tissue
repair or regeneration. This is also thought to be the
case in the liver and there is a good evidence for the
existence of such stem cells even though their exact
type, location and potency are still under discussion
[17]. Regarding the type of stem cells, liver seems to be
an important source for hematopoietic stem cells dur-
ing fetal development [18] and hematopoietic stem
cells persist in the adult liver [19]. Data on the onto-
logic potential of population of stem cells have estab-
lished that highly purified hematopoietic cells have the
capacity to differentiate into hepatocytes and repopu-
late the liver after intravenous transplantation [20].
Two competing paradigms are emerging: 1) that pluri-
potent progenitor cells with multi-lineage differentia-
tion potential are present in several, if not all, tissues;
and 2) that tissue-specific pluripotent progenitor cells
maintain the capacity for transdifferentiation when
placed in the appropriate environment. The identifica-
tion of a common source for both hepatic and hemato-
poietic progenitor cells is blurring the distinction be-
tween solid organ and blood progenitor cell
transplantation and raises the probability of treating
hepatic diseases by transplantation with hematopoi-
etic progenitor cells [21]. As many other stem cells,
liver stem cells are thought to persist in a microenvi-
ronmental niche within surrounding other cells, ECM
and secreted factors that provides them with develop-
mental stimuli and maintenance cues for their divi-
sion, proliferation or differentiation. Such an environ-
ment is thought to lie in the canals of Hering (oval
cells) [22, 23] and possibly in the periportal ductular
zone [24, 25]. In their niche, the oval cells, [26] named
after their ovally shaped nucleus, appear to act as
bipotential precursors with lineage commitments for
biliary cholangiocytes (bile duct epithelium) and hepa-
tocytes. They may contribute to liver regeneration
when injury is severe with vast impairment of hepato-
cyte proliferation as seen for example in cirrhosis or

submassive necrosis because of toxins, viruses, or
drugs [27, 28]. Hepatocytes are regarded as being
unipotent committed stem cells that are normally qui-
escent and can be induced to generate themselves
again [29]. The lack of their response to growth signals
also results in activation and rapid proliferation of oval
cells. These initially appear near bile ductules, fol-
lowed by migration into the hepatic parenchyma [27].
Cellular liver tissue regeneration is assumed to be
accomplished in a sequence of phases including 1) ini-
tiation phase with replicating competence; 2) prolifer-
ation phase where expansion of cell population occurs;
3) termination phase where cell growth is suppressed
to terminate regeneration at a set point [30]. In addi-
tion, a few days after hepatectomy, stellate cells start
sending delicate processes between regenerating hepa-
tocytes to make sinusoids and vascular parts of the
regenerating organ [31]. Fascinatingly, it has also been
suggested that hepatocytes could be derived from
transdifferentiating non-hepatic sources. As men-
tioned before, hematopoiesis and liver development
share some common stages and the liver itself contrib-
utes to fetal hematopoiesis, [32], thus observations of a
hepatic lineage development in stem cells derived from
bone-marrow appear quite plausible [29, 33–36]. Alter-
natively, there is also new evidence that a cell popula-
tion from the adult liver exhibits a potential for hema-
topoietic reconstitution [37]. In contrast to intrahepatic
oval cells that are activated upon heavy and chronic
liver damage, these extrahepatic cells can migrate from
the bone marrow into the liver by the time its own
capacity for regeneration is exhausted. It has, however,
presently not yet been clarified if and how these stem
cell populations interact with one another and the res-
ident liver cells to provide for the appropriate growth
environment in cases of necessary regeneration. Most
interesting for potential therapeutic applications, he-
patic lineages have also been generated from umbilical
cord stem cells, [38, 39] adipose stromal cells, [40] or
embryonic stem cells [41, 42].

Regeneration of liver is a mixture of hyperplasia and
hypertrophy of hepatocytes. Regeneration response is
maximal when two-thirds of the liver is resected. More
or less than this amount retards growth by suppress-
ing DNA synthesis and mitotic activity. Hypertrophy of
hepatocytes begins within hours after hepatectomy,
and then with increasing DNA synthesis hyperplasia
follows. This sequence begins in the periportal region
and spreads toward the pericentral region of the lobule
[43–45]. Some studies based on the histological evalu-
ation during liver regeneration have shown that liver
regeneration originates from hepatocytes located in
zone 2, extends to zone 1 and occasionally to zone 3
and, furthermore, there is a significant increase of
sinusoidal endothelial cell pores in zones 1 and 3
within 5 min after hepatectomy that is only main-

tained in zone 1 after 24 h [46, 47].
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AT MOLECULAR LEVEL

Promoters of Regeneration

The following proposed model of cytokine and growth
factor activation of transcriptional cascade and DNA
synthesis occurs during liver regeneration: After partial
hepatectomy, either de novo-released cytokines or gut-
derived cytokines activate hepatic non-parenchymal
cells, leading to increased production of tumor necrosis
factor (TNF)-�, lymphotoxin (LT)-�, and interleukins
(IL) -1 and -6. Other growth factors are also released
from other cells in the liver and surrounding organs.
These cytokines and growth agents are responsible for
activation of nuclear factor kappaB (NF-�B), signal
transduction and activation of transcription (STAT)3,
possibly caat enhancer binding protein (C/ERB)-�, and
other factors in remnant liver cells. As a consequence
of the activation of these hepatocyte transcription
agents, the primary growth response program
(immediate-early genes, AP-1, c-Myc activation, glu-
cose regulation) is initiated, finally resulting in DNA
synthesis [1, 7].

More specifically, liver regeneration includes three
steps: 1) initiation step, 2) proliferation step, discussed
together as promoters of regeneration, and 3) termina-
tion step, discussed as the inhibitors of regeneration in
the next section.

The initiation step is characterized by priming of
quiescent hepatocytes by factors such as TNF-�, IL-6,
and nitric oxide (NO). This results in induction of hepa-
tocytes to become sensitive to growth factors and com-
petent for replication. The proliferation step is the step

TAB

Promoters and inhibitors

Steps of liver
regeneration Factors

Initiation TNF-� TNFR ¡ 1STAT3 & NF-�B ¡ 1 a
IL-6 1STAT3 synthesis and 1 susceptib
LT-� 1NF-�B only in oval cells ¡ 1 sus
NO 1 S-nitrosylating procaspase ¡ 2
IFN-� Affects through TNF-� and LPS

Proliferation HGF Met R ¡ 1 DNA and protein synth
TGF-� EGFR ¡ 1 DNA and protein synth
EGF EGFR ¡ 1 DNA and protein synth
HSS Autophosphorylation and restoring
NE 1 exposure of hepatocytes to growt
Insulin 1 exposure of hepatocytes to growt
SOM 1 exposure of hepatocytes to growt
Glucagon 1 exposure of hepatocytes to growt

Inhibition TGF-� Counteracting TGF-� ¡ 2 DNA sy

TNF-�, tumor necrosis alpha; IL, interleukin; LT-�, lymphotoxin-be
factor; TGF, transforming growth factor; EGF, epidermal growth f
somatostatin; TNFR, tumor necrosis factor receptor; STAT3, signal
kappaB; LPS, lipopolysaccharide; EGFR, epidermal growth factor re
that hepatocytes enter into the cell cycle’s G1-phase
and are stimulated by complete mitogens including
hepatocyte growth factor (HGF), transforming growth
factor (TGF)-�, and epidermal growth factor (EGF).
These hepatomitogens together with co-mitogenes like
norepinephrine and potentiating factors like insulin
induce hepatocytes to override the mitogen restriction
point at two-thirds of the G1 phase and progress into
DNA synthesis. These factors induce cyclins and
cyclin-dependent kinases that play critical roles in cell
cycle progression [9, 48, 49].

Numerous growth factors including HGF, TGF-�,
EGF, hepatic stimulator substance (HSS), glucagon,
insulin, and more recently cytokines, TNF, IL-1, and
IL-6, or somatostatin (SOM) have been implicated in
regulating regeneration process, although the mecha-
nisms involved remain poorly understood (Table 1).

Oval cells express receptors for all these growth fac-
tors, providing a molecular pathway by which stellate
cells may influence the growth and development of oval
cells [27]. The growth factors continue to be expressed
at high levels throughout the period of expansion and
differentiation of the oval cell population [27].

HGF is a peptide secreted from hepatocytes after
partial hepatectomy and binds to tyrosine kinase re-
ceptor c-met with high affinity. Because of its high
mitogen potency for hepatocytes, a chain of intracellu-
lar reactions causing cell proliferation and differentia-
tion is initiated, leading to acceleration of liver func-
tion and protection of liver cells from injury [51, 52].
HGF regulates a diversity of processes in the liver in
addition to being a direct stimulant of hepatocyte pro-
liferation. HGF is an effective inducer of DNA synthe-

1

ecting liver regeneration

Target

ation of genes ¡ 1 susceptibility of hepatocytes to growth factors
y of hepatocytes to HGF
tibility of oval cells to growth factors
F-� apoptotic activity through caspase-3

s ¡ mitosis
s ¡ mitosis
s ¡ mitosis
GFR
ctors
ctors
ctors
ctors
esis

NO, nitric oxide; IFN-�, interferon gamma; HGF, hepatocyte growth
or; HSS, hepatic stimulator substance; NE, norepinephrine; SOM,
nsduction and activation of transcription-3; NF-�B, nuclear factor
tor.
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sis in hepatocyte in culture but, moreover, it alters the
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morphology and motility of cells. In vivo HGF is syn-
thesized in non-parenchymal cells and acts on hepato-
cytes in a paracrine fashion. It has been suggested that
HGF is activated by proteases after hepatectomy [1].
Some studies have demonstrated that HGF cell-
surface receptors internalization enhances 15 min af-
ter partial hepatectomy to be attached to intracellu-
larly made HGF and maybe that’s the initial factor
that starts regeneration. The processes are still under
investigation [53]. HGF has also been shown as being
able to induce differentiation of bone marrow cells into
a hepatic lineage [27]. TGF-� is another peptide that is
secreted by hepatocytes during hepatic injury and in-
creases HGF regeneration effect after partial hepatec-
tomy [54]. TGF-� belongs to a family of structurally
related polypeptide growth factors, of which EGF was
the first member to be isolated and characterized.
TGF-� and EGF signal through a common cell surface
receptor tyrosine kinase, called the EGF receptor.
Based on experiments on TGF-� expression during
liver regeneration after partial hepatectomy, it has
been proposed that TGF-� acts in an autocrine fashion
as a direct stimulator of DNA synthesis of hepatocytes
during liver regeneration [55]. SOM non-specifically
acts on injured tissues to stimulate rapid growth and in
case of liver injury stimulates regeneration [56].

IL-6 is a cytokine expressed by a variety of cells,
influencing liver growth both indirectly by priming
hepatocytes to respond to growth factors mainly HGF
by inducing expression of HGF and inhibiting hepato-
cyte apoptosis, and directly as a hepatic mitogen induc-
ing regeneration [57]. Therefore, IL-6 is required for
liver regeneration and repair, and transcriptionally
up-regulates an array of genes during liver growth. In
this regard, IL-6 and TNF-� are among the most im-
portant mediators for early signaling pathways in liver
regeneration. IL-6 is the main mediator in promoting
regeneration after combined ischemia and hepatic re-
section. IL-6 acts directly on hepatocytes inducing
STAT3 to the nucleus and extracellular regulated ki-
nase activity causing early gene activation and mitosis.
STAT3 suppresses hepatic apoptosis through inhibi-
tion of caspase-3 and -8 activities. In addition, IL-6 is
implicated in hepatocytes survival through inhibition
of TGF-�–mediated Fas activation [58, 59, 60]. In this
regard, the direct anti-apoptotic effects of IL-6 are
demonstrated in vitro as IL-2 decreases Fas-mediated
apoptosis in both IL-6�/� and �/� primary liver cell
cultures.

TNF-� is a proinflammatory cytokine influencing
liver regeneration and apoptosis following partial hep-
atectomy. It triggers either cell proliferation or cell
death depending on effector pathways. TNF-� has two
different receptors TNFR-1 and -2. TNFR-1 is the only
one necessary for liver regeneration, and after stimu-

lation activates NF-�B and STAT3. TNF-� also acts as
a cell death mediator in a variety of cells types by
attaching to TNFR-1 and -2. Inhibition of NF-�B acti-
vation increases susceptibility to TNF-�-induced cell
death, concurrently with sustained Jun N-terminal ki-
nase activation, an important contributor to cell death
responses [61–64]. After partial hepatectomy, TNF-�
also signals on TNFR-1 to activate NF-�B that trans-
locates into the nucleus to induce IL-6 expression, and
subsequently IL-6 activates STAT3 [65]. After the re-
lease of IL-6 and TNF-� and activation of STAT3 and
NF-�B, NO is also generated following nitric oxide
synthase (NOS)-2, which prevents TNF-�–mediated
activation of proapoptotic caspase-3 and protects
hepatocytes from cytokine-mediated death by
S-nitrosylating procaspases [66].

Lymphotoxin (LT)-� is a cytokine that is expressed
by activated lymphocytes and through a receptor-
mediated process by activating NF-�B regulates gene
expression only in oval cell-mediated but not
hepatocyte-mediated liver regeneration, and its ab-
sence impairs the oval cell-mediated regenerative re-
sponse. IL-6 and IL-1� regulate the expression of LT-�
through cis-acting promoter elements [67, 68].
Interferon-� is another cytokine combining lipopoly-
saccharide (LPS) or TNF and regulating liver regener-
ation by inhibiting hepatocyte replication and enhanc-
ing oval cell proliferation [69].

HSS is a cytosolic liver-specific growth factor peptide
that involves in hepatocyte protection and proliferation
by restoring DNA synthesis and autophosphorylation
of EGF receptor (EGFR) tyrosine residue on hepato-
cytes based on a time-dependent manner [70–74].

A stromal derived factor-1� is produced in the liver
and released into the damaged tissue. Thereby
CXCR4� bone marrow stem cells could be recruited to
the site of injury via chemotactic gradient. As the pro-
genitor cells enter the liver, they come into contact
with another chemokine, stem cell factor, which facil-
itates the recruitment of stem cells [27]. Then, there is
an expansion in the number of stellate cells in the
periportal regions of the liver. This results in an in-
creased production of growth factors [27]. There is an
increase in soluble fibronectin, an extracellular matrix
molecule produced by stellate cells, which provides an-
other avenue for stellate cells to interact in stem cell
engraftment [27].

Two receptor-ligand and growth factor signaling sys-
tems appear to be mainly involved in liver regenera-
tion: HGF and its receptor (Met) and the EGFR and its
relatively large family of ligands and coreceptors [8].
The EGFR is a member of family of four. The other
members are ErbB-2 (HER-2, NEU), ErbB-3 (HER-3),
and ErbB-4 (HER-4). There are many ligands for
EGFR, including EGF, TGF-�, amphiregulin, heparin-
binding EGF (HB-EGF), cripto, epiregulin, and

�-cellulin [8]. Amphiregulin is expressed early (within
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30 min) during liver regeneration after hepatectomy.
There is a unique role for amphiregulin that the time
course of its expression corresponds with the pattern of
tyrosine phosphorylation of the EGFR, which is dra-
matically enhanced at 60 min after partial hepatec-
tomy [8]. EGFR ligands are not equally interchange-
able because removal of amphiregulin seriously affects
liver regeneration whereas removal of TGF-� has no
effect. EGFR ligands, despite the fact that they share
the same receptor, have different effects, not only dur-
ing liver regeneration but also in most other biological
processes. Although all EGFR ligands can induce ErbB
signaling, their expression patterns differ and their
effectors functions are non-overlapping, ranging from
cell motility and proliferation to growth inhibition.
Most EGF family members are synthesized as trans-
membrane precursors, and these may have juxtacrine
interactions aside from their soluble counterparts [8].
Unlike the other ErbB proteins, EGFR is coupled to the
phospholipase C gamma pathway. Once activated, the
ErbB receptor-ligand complex is endocytosed in
clathrin-coated pits. By decreasing the rate of ligand
dissociation from the cognate receptor EGFR, ErbB-2
heterodimers remain at the cell surface longer and
undergo a slower rate of endocytosis when compared
with EGFR homodimers. This recycling allows a rapid
return of the potent heterodimer to the cell surface for
another round of activation [8].

NF-�B is a dimeric transcription factor that is in-
duced after growth factors stimulation and controls the
expression of genes encoding cytokines, regulates the
cell cycle and is an essential antagonist of apoptosis
during liver regeneration. NF-�B consists of different
proteins including Rel (c-Rel), p65 (RelA), RelB, p50/
p105 (NF-�B1), and p52/p100 (NF-�B2) and all these
individual proteins have distinct biological activities.
For example, p50 subunit has a definitive protective
role in the injured liver by limiting the expression of
TNF-�, and inhibition of NF-�B enhances the apopto-
sis induced by TNF-�. In addition, the p65 subunit has
stronger transcription activity than p50, but the role of
each subunit is not fully understood [75–78]. The acti-
vated form of NF-�B is retained in the cytoplasm and
under specific cellular stimulation is phosphorylated
and degraded by its inhibitor (I�B�) [79]. Notably,
during liver regeneration the signal resulting in NF-�B
activation occurs within a few minutes of the partial
hepatectomy and is gone within 1 to 2 h when NF-�B
levels are again undetectable. In the regenerating he-
patic tissue, activation of NF-�B occurs in liver cells,
but may also occur in non-parenchymal cells such as
endothelial and Kupffer cells that also have receptors
for a variety of cytokines.

Even though a lot of details regarding liver regener-
ation which are still unclear, it is proven that HGF is

the single most potent hepatocyte mitogen which, in
conjunction with other growth factors (TGF-�, SOM,
and IL-6) and also HSS, maintains hepatic regenera-
tion [80]. It is important to note that the HGF levels do
not correlate with the degree of liver regeneration [81].
Some studies support that exogenous administration of
HGF, TGF-�, and HSS promotes and shortens the time
necessary for regeneration after partial hepatectomy
in patients with cirrhosis and fulminant hepatic fail-
ure; [50, 54, 71] in particular, HGF in transgenic ani-
mals may shorten the time to half needed for regener-
ation [82]. In addition to the above-mentioned factors,
norepinephrine and insulin are also necessary for reg-
ulation of growth of regenerating liver by exposing the
hepatocytes to growth factors [80, 83].

Inhibitors or Stop Signals for Regeneration
and Their Mechanism

After regeneration is complete a stop signal should
keep the regenerated liver to an appropriate functional
size. Inhibitors and stop signals of hepatic regenera-
tion are not clearly well known and only little informa-
tion is available. On the top of the list is the protein
TGF-� that inhibits DNA synthesis in regenerating
hepatocytes, is secreted from both hepatocytes and
platelets and modulates liver regeneration (Table 1)
[84, 85]. TGF-� is believed to act on various cell and
tissue types by counteracting the growth-promoting
effects of other growth factors, such as TGF-�. Also the
cation-independent mannose 6-phosphate receptor
protein, which is overexpressed in hepatocytes in the
course of liver regeneration and indirectly by targeting
TGF-� to hepatocytes, acts as a negative regulator for
regeneration [86].

It is clear that after hepatectomy the regenerating
processes should suppress the growth inhibitors to
help the liver regenerate as effectively as possible.
After partial hepatectomy, TGF-� will be increased
within 2 to 6 h and one of the main factors that is
known to help this procedure is insulin growth factor
(IGF) binding protein-1 (IGFBP-1), which is a
hepatocyte-derived protein that reduces the level of
TGF-� and helps continuing the normal liver regener-
ation [87, 88].

TGF-�1 and TNF have been shown to suppress the
differentiation of progenitor hematopoietic stem cells
into megakaryocytes and down the myeloid lineage
[27].

AT GENE LEVEL

In normal cell cycle of all cells including the hepato-
cytes, the G1 phase is the Gap 1 and S-phase is for the
DNA synthesis and G2 phase is the Gap 2, and M phase
is the part in which the chromosomes and cytoplasm
separate and G0 is exiting from the cell cycle. Hepato-

cytes in general are not terminally differentiated cells
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and even cells situated in the G0 phase can undergo
proliferation upon appropriate stimulation [30]. HGF
affects hepatocytes at G1 phase and promote cell cycle
to S-phase and DNA synthesis [89]. It is also important
to mention that the TGF-� enters the cell cycle and
inhibits the hepatocytes regeneration through G1 ar-
rest [45, 90].

The multi-step process of liver regeneration is con-
stituted of at least two critical phases: the transition of
the quiescent hepatocyte into the cell cycle (priming)
and the progression beyond the restriction point in the
G1 phase of the cycle. These steps appear to be under
separate controls, priming by the TNF and IL-6 cyto-
kines and cell cycle progression by the growth factors
(HGF and TGF-�) [9]. In the first phase, quiescent
hepatocytes need to become “competent” to enter the
cell cycle and replicate. These cells go through an ini-
tial stage, “priming” (“competence”), which corre-
sponds to the G0 to G1 transition, before they acquire
the capacity to respond to a set of factors that make the
cells progress through the G1 phase and replicate. In
the next phase, competent hepatocytes can enter G1,
progress through the cell cycle and undergo DNA rep-
lication [7].

The priming phase corresponds to the first 4 h after
hepatectomy and is best characterized by the expres-
sion of immediate early genes [91, 92]. Several years
ago it was observed that more than 70 growth-response
genes are activated in the remnant liver during the
early stages of liver regeneration and that the number
has been expanded over the years to more than 100.
Most important such genes (c-fos, jun B, c-jun, c-myc)
are those encoding transcription factors and proteins
that have been identified as “proto-oncogenes” because
somatic mutations or overexpression of these genes can
lead to malignant transformation. Delayed genes (Bcl-
xL) are also expressed between the first 4 to 8 h after
partial hepatectomy [9]. Activation of proto-oncogenes
(c-fos, c-myc, c-Ha-ras, c-met, c-Erb B1, TGF-�, and
TGF-�) in the immediate early gene response involves
both transcriptional and post-transcriptional mecha-
nisms. Important to note that post-translational mod-
ification of proteins such as NF-�B (it occurs in the
absence of protein synthesis and leads to dramatic
increase in DNA binding capacity) is a key element in
making hepatocytes become responsible to growth fac-
tors at the start of liver regeneration [7]. In particular,
the first initial activated transcriptional factors in liver
regeneration include NF-�B, STAT3, AP-1, and
C/EBP�, which then in part cause secondary activation
of multiple genes including growth factor genes that in
turn causes the hepatocytes more suseptible to growth
factors and help them enter the cell cycle to move from
G1 to S-phase and DNA synthesis and regeneration [9,
26, 93–96].
Mediators of acute phase reactants mainly IL-6 and
TNF secreting from both injured liver cells and non-
parenchymal liver cells within minutes to the extracel-
lular fluid are the main promoters of gene-expression
toward stimulation and liver regeneration [97, 98]. The
transcription factor C/EBP� is one of the known main
factors associated with regeneration arrest during
compensatory regeneration through affecting the
genes responsible for regeneration [99, 100].

MONITORING THE REGENERATED LIVER

Liver regeneration can be assessed by a number of
tests including liver weight, synthesis rates, certain pro-
tein levels and specific enzyme markers, mitotic counts,
DNA counts, immunohistochemical staining of nuclear
antigens, and gene expressions.

Flow cytometry is an accurate method for monitoring
hepatic regeneration with poly- or monoclonal antibod-
ies against special receptors on hepatic cells like CD4
CD11b, but requires complex equipment and special
labs. Measurement of protein and enzyme levels for
regeneration monitoring such as putrescine, ornithine
decarboxylase, thymidine kinase, �-fetoprotein, and early
pregnancy factor are non-invasive tools but are not
accurate because of the nutritional status of the host.
Mitotic count is another method to monitor liver regen-
eration but it only measures a short segment of the cell
cycle (the M phase) and cannot be observed by light
microscopy. For DNA synthesis evaluation, thymidine
and BrdU as the fundamental elements should be mea-
sured but this procedure requires a pre-injection of ra-
dioactive isotopes and nucleotides, thus rendering it
dangerous to use in humans.

Immunohistochemical staining for nuclear antigens
(Ki-67, proliferating cell nuclear antigen [PCNA], DNA
polymerase �, and nuclear organizer region proteins) is
another method to monitor. PCNA protein measure-
ment by immunoblot is simple, accurate and reproduc-
ible marker for liver regeneration and the percentage
of hepatocytes stain for PCNA can be calculated. Gene
expression rates such as histone 3 mRNA that shows
those hepatic cells that entered the S-phase, needs
recombinant DNA technology to monitor regeneration
and is time consuming. It is therefore recommended
that clinicians can use at least two different indepen-
dent methods to monitor liver regeneration [101–105].

In addition, special measuring techniques include
galactose elimination test, single-photon emission com-
puted tomography (CT) with 99m-technetium galacto-
syl human serum albumin scintigraphy (GSA-LV) [106]
or Technetium-99m-diethylene triamine pentaacetic
acid-galactosyl human serum albumin (99mTc-GSA).
In particular, asialoglycoprotein receptor (ASGP-R) is
a hepatocyte cell surface receptor specific for galactose-
terminated glycoproteins and 99mTc-GSA is an ana-
logue ligand to ASGP-R and when administered will

bind to these receptors with high specificity and its
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accumulation in liver cells corresponds with the char-
acteristics of liver function tests. This test is more
accurate than CT scan alone because CT scan only
shows volume changes but not function, whereas this
test shows that the remnant and regenerated liver are
functional or not [107–110].

In adults, the liver does not always regain its pre-
operative size after hepatectomy (liver volume may not
change significantly beyond 1 year after surgery) [111].
Patients’ body size and intrinsic liver function or liver
blood flow, represented by indocyanine green (ICG) at
15 min (retention rate at 15 min after an intravenous
injection of ICG), may be related to regenerated liver
size (a significant correlation is observed between liver
volume at 1 year and body surface area, and, moreover,
a significant inverse correlation is noticed between
liver volume and plasma retention rate of ICG) [111].

The ShvO2 (hepatic venous hemoglobin oxygen sat-
uration) seems to be a simple index of the regenerative
status of the remnant liver, and a useful method for
monitoring liver regeneration after hepatectomy. The
ShvO2 represents the sum of hemoglobin oxygen satu-
ration in the blood at the venous ends of all sinusoids,
and its value reflects the oxygen supply/demand rela-
tion in the liver; i.e., factors producing an imbalance
between oxygen supply and demand should cause a
corresponding deviation in the ShvO2 levels [112]. Fur-
thermore, the ShvO2 could be related to the changes in
hepatic energy charge when using experimental ani-
mals (rats) inspired with varying concentrations of ox-
ygen, and it might be a valuable indicator of energy
status of liver during hepatic surgery. Decreased ShvO2

levels are synchronized with increased DNA synthesis
in the remnant liver. Energy charge levels are also
significantly decreased at day 1 after hepatectomy,
suggesting that the regenerating liver demands an in-
creased amount of oxygen for mitochondrial oxidative
phosphorylation to restore hepatic energy charge [112].

ORGANS THAT AFFECT THE HEPATIC
REGENERATION

Pancreas affects the hepatic regeneration by secret-
ing hepatopoietin A, a mitogen and growth factor for
hepatocytes and polyamines like spermidine that helps
to maintain hepatic integrity. In addition, pancreatic
exocrine secretions trigger hepatocyte proliferation by
unknown mechanisms. All of these have been shown
through combined resection of pancreas and liver.
Moreover, after combined liver and pancreas resection,
the anti-inflammatory IL-10 expression is induced in
spleen, which down-regulates the release of the TNF-�,
thereby inhibiting liver regeneration. It seems that
intact pancreas plays a key role in modulating the se-
cretion of IL-10 as a suppressor of hepatic regeneration
[113–116].
The intestine, by regulating the release of pancreatic
hormones (e.g., insulin) by some secretions like
glucagon-like-peptide-1, affects the processes of liver
regeneration. Moreover, in wide intestinal resection
with the absence of bile in the lumen, liver regenera-
tion related with cyclin E-associated kinase inactiva-
tion will be delayed, thereby indicating the role of both
intestine and bile in the processes of regeneration [117,
118].

SUPPORTIVE CARE FOR KEEPING THE REGENERATED
LIVER FUNCTIONAL

Particular strategies, substances, medicines, and nu-
tritional support can affect the process of regenera-
tion. Prostaglandins (PGs) have long been known to
possess cytoprotective effects. In particular, it has been
demonstrated that PGs and prostacyclin affect the re-
generation process. PGE1 after partial hepatectomy
increases in remnant cells and stimulates cAMP pro-
duction and increases ATP level in both remnant and
regenerating liver and enhances DNA synthesis. It
exerts a protective effect on liver injury and augments
the liver regeneration through increasing in HGF pro-
duction. It is known that cyclooxygenase (COX) enzyme
modulates the production of PGs, and that inhibition of
this enzyme (e.g., by non-steroidal anti-inflammatory
drugs), particularly COX-1 form, negatively affects the
process of regeneration in the liver. Thus, exogenous
administration of PGs is recommended [119–126].

Sympathetic nervous system inhibition promotes liver
accumulation of oval stem cells and assists in the re-
generation process [127]. From another viewpoint, nu-
trition can promote growth of the remnant liver and
maintain regeneration. Total parenteral nutrition,
when enriched with glutamine, and a balance between
long and medium chain triacylglycerols augment liver
cell proliferation and liver regeneration. In addition,
glucose alone inhibits regeneration; however, when
combined with other nutrients it does not seem to
affect this process [128, 129]. Lipid emulsions and a
mixture of standard aminoacids, especially branched
chain aminoacids (valine, leucine, and isoleucine), en-
hance the regeneration [130, 131]. It has also been
demonstrated that high concentration of aminoacids in
portal venous circulation is one of the most powerful
trigger factors for liver regeneration [132].

Even though oxygen concentration in portal vein
may not affect the regeneration process directly [133],
the regenerating liver requires increased amount of
oxygen for mitochondrial oxidative phosphorylation to
restore hepatic energy charge. Thus, preoperative hy-
perbaric oxygenation induces compensatory hypertro-
phy and regeneration of the predicted remnant liver
and as already mentioned, postoperatively hepatic ve-
nous hemoglobin oxygen saturation can be used as an
index of liver regeneration in the remnant liver [133,

134]. During ischemia, Kupffer and T cells are acti-
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vated initially in the ischemic area and then in non-
ischemic area. Soon after, they mediate the activation
of platelet adhesion and neutrophil inflammatory re-
sponse that infiltrates the injured liver and increases
the expression of more adhesion molecules on endothe-
lial cells and more generation of reactive oxygen radi-
cals. The methods by which ischemia/reperfusion in-
jury can be diagnosed include ASGP-R ligand on
hepatocytes, showing ischemic damage histologically,
hepatobiliary scintigraphy, an easy method in clinics,
and electron microscopy, the diagnostic gold standard
[135–145]. Reactive oxygen radical scavengers can be
used to protect ischemia/reperfusion injury syndrome.

Notably, potential therapies for both short and long-
term saving of grafts and regeneration include: 1) an-
tibodies to degenerative cytokines using free radical
scavenging enzymes, e.g., superoxide dismutase or cata-
lase; 2) pre-treatment with endothelin (ET)-1 receptor
antagonist; 3) treatment with platelet activating factor
receptor antagonist, indirectly modulating the plasma
ET-1 level; 4) treatment with IL-6, which, through its
anti-inflammatory properties against TNF-�, limits he-
patic warm ischemia/reperfusion injury: IL-6 appears
to be a key protective molecule in reducing injury and
promoting regeneration after combined ischemia and
major hepatectomy [144]. IL-6 has both mitogenic
and anti-apoptotic [146] effects on hepatocytes and
protects the regenerating liver against ischemic injury
[7]. Besides, TNF/IL-6–induced NOS has a cytoprotec-
tive role in liver regenerating liver [147]; 5) estrogen
and its derivates, which, through an unknown path-
way, limits hepatocellular ischemia injury; 6) HGF,
which helps hepatic microcirculation and regeneration
in ischemically damaged liver following transplantation;
7) down-regulation of Kupffer cells with calcium block-
ers and pentoxifylline [148–157]. Finally, “ischemic
preconditioning,” probably a receptor-mediated adap-
tive process inducing endogenous protection against
ischemia-perfusion injury in the regenerated liver, is
another potential therapeutic strategy currently under
investigation [158].

FACTORS THAT IMPAIR REGENERATION

Prolonged period of cold preservation of the liver
from cadaveric split or living donor up to 10 h impairs
TNF-� and IL-6 production and adversely affects the
regeneration process [159]. Concomitant infection, es-
pecially with gram negatives with circulating endotox-
ins, increases the proteolytic activity and impairs liver
regeneration [160].

The most common innate and native problems of
the body and liver that impair the regeneration pro-
cess include lack of C3� and C5� complement com-
ponents, two potent inflammatory mediators, which
attenuate the activation of transcriptional factors

NF-�B and STAT3 and impair regeneration [161].
Lack of IGFBP-1, which activates transcriptional fac-
tor C/EBP�, may affect liver regeneration to proceed
properly [162]. Leptin is an adipocyte-derived anti-
obesity hormone. Patients with fatty liver and non-
alcoholic hepatic steatosis are characterized by liver
steatosis and hyperleptinemia. Hyperleptinemia is be-
cause of abnormal leptin receptors and peripheral lep-
tin resistance. Leptin levels correlate directly with the
severity of hepatic steatosis. Apart from the acquired
liver diseases, some genetic diseases may negatively
affect the leptin receptors. Consequently, fat is accu-
mulated in the hepatocytes and impairs their prolif-
eration through inhibition of transcriptional factor
STAT3, thereby impairing regeneration. Moreover, fatty
hepatocytes have decreased tolerance against ischemic
injury, reversely affecting their regeneration capability
[163–168].

PROTOCOL FOR REGENERATION

Apart from the innate capacity of the liver against
rejection, there are mechanisms or factors that may
help the graft survive and continue the regeneration
process, including cytokines IL-4 and IL-10 that sup-
press alloimmune response in transplantation and
maintain the tolerance to allografts. Thus, monitoring
the levels of these cytokines is important for the eval-
uation of acute allogarft rejection and regeneration.
In addition, they can be administered for supporting
the graft [169, 170]. Induction of antigens (e.g., donor
blood) through the portal vein is another technique for
transplantation tolerance [171]. Besides, an immuno-
suppressive protein, human analogue of liver suppres-
sor factor-1, increases the transplant tolerance, and
liver regeneration after injury via undetermined mech-
anisms [172, 173]. One of the problems that may occur
during transplantation is the passenger leukocyte syn-
drome, i.e., the migration of leukocytes from the allo-
graft into the recipient. This event may result in al-
loantibody production against host antigens and may
induce hemolysis. Therefore, supportive management
like plasma exchange therapy should be undertaken to
improve survival especially in patients with sufficient
residual capacity of liver regeneration [174–177]. It
should be considered that host cellular responses to
allograft are enhanced in the regenerating small-for-
size grafts, and, furthermore, graft’s own regenerative
potential suppresses rejection of hepatic transplants
[178, 179].

Finally, to induce liver regeneration, the patient
should undergo administration of appropriate doses of
HGF, IL-6, IL-10, PGE1, and sympathetic blockers
through transcutanous infusions via the portal vein,
and high-dose glutamine and branched-chain aminoac-
ids. If transcutanous unilateral portal vein emboliza-
tion with hyperbaric oxygen administration is added to

this procedure, the result and the rate of regeneration
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is faster and comparable. Moreover, molecular adsor-
bents recirculating system (MARS) has recently been
approved to be used as a bridging therapy of affected
liver to modulate the regeneration process through
increasing the hepatic growth factors EGF, TGF-�1,
and IGF-1 [180]. There is also a new report advocating
that IGF-1 is a new therapeutic strategy for improving
liver regeneration although this has to be confirmed by
future studies [181].
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