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Helicobacter pylori is highly adapted for colonization
of the human stomach and is present in about half of
the human population. When present, H pylori is
usually the numerically dominant gastric microor-
ganism. H pylori typically does not cause any adverse
effects, but it is associated with an increased risk of
noncardia gastric adenocarcinoma, gastric lym-
phoma, and peptic ulcer. Disorders such as esopha-
geal diseases and childhood-onset asthma were re-
cently reported to occur more frequently in
individuals who lack H pylori than in H pylori-positive
persons. In this review, we discuss biologic factors
that allow H pylori to colonize the human stomach,
mechanisms by which H pylori increases the risk of
peptic ulcer disease and noncardia gastric adenocar-
cinoma, and potential benefits that H pylori might
confer to humans.

Helicobacter pylori as a Member of the
Normal Human Microbiota

rom birth to death, humans are in contact with

microbes, either transiently or persistently. Virtually
every mucosal and cutaneous surface in the human body
is colonized by persistent residential microbes!'-$ (Figure
1). In most niches of the human body, including the oral
cavity, esophagus, colon, and skin, many bacterial species
are present, and no single species predominates. The
distribution of the microbes is not accidental; each niche
is colonized by microbes that are either conserved among
most humans or are host specific. It has been presumed
that the conserved microbiota have specific adaptations
that permit persistence at particular locales.

What is known about bacterial colonization of the
human stomach? Most studies of this topic have focused
on Helicobacter pylori. Several points can be summarized
as follows:

® Natural colonization by H pylori is restricted to
humans and possibly several other primates (al-
though the latter is not certain).
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¢ The stomach is the main habitat of H pylori. There
may be extension of the H pylori habitat into the
proximal duodenum or distal esophagus, usually in
the presence of gastric metaplasia in those sites.5” H
pylori also has been found overlying ectopic gastric
epithelium in Meckel’s diverticulum, but this is an
uncommon circumstance.® H pylori genetic se-
quences have been identified in oral and colonic
contents, but it is not clear whether these organisms
are transient or residential.

H pylori gastric colonization is acquired early in
life (almost always before the age of 10 years),
and in the absence of antibiotic therapy it gener-
ally persists for life.10

When present, H pylori usually is the numerically
dominant gastric microorganism. Studies of the
bacterial flora of the human stomach, based on poly-
merase chain reaction amplification of 16S rRNA
sequences, show that H pylori represents a high pro-
portion (70%-95%) of the clones identified.112 The
human stomach is occasionally colonized by “Can-
didatus Helicobacter beilmannii,”'3 which is closely re-
lated to H pylori, but such colonization is relatively
uncommon. Colonization of the human stomach by
a single dominant species is similar to the bacterial
colonization pattern sometimes observed in the hu-
man vagina.'* However, in the vagina, the dominant
organism may be one of several Lactobacillus species,
whereas in the stomach, only a single species (H
pylori) is typically present. Thus, H pylori can be
considered as the dominant microbiota of the hu-
man stomach.

Abbreviations used in this paper: LPS, lipopolysaccharide; OMP,
outer membrane protein; PAl, pathogenicity island.
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H pylori in Human Populations

H pylori is present in human populations through-
out the world. Phylogeographic studies indicate that hu-
mans have been colonized by H pylori for 258,000 years,
since before the most recent (but prehistoric) out-of-
Africa migration.’s As humans traveled around the world
populating new geographic regions, they carried their
ancestral H pylori with them.'¢ On the basis of the pres-
ence of gastric Helicobacter species (but not H pylori) in
other mammals (reviewed in Solnick and Schauer??), it is
possible that gastric Helicobacter species are ancestral in
mammals, and we may have carried the ancestors of
present-day H pylori before we evolved into humans. Un-
like most other residential microbiota of which we are
aware, H pylori is becoming less common in human
populations with socioeconomic development; this
clearly has been happening over the course of the 20th
century in Western countries.!®!® Because humans are
the only natural host for H pylori, the decreasing preva-
lence can be attributed to diminished transmission
among humans and perhaps a decreased duration of
gastric colonization. Contributing factors include im-
proved sanitation, smaller family sizes, and the frequent
use of antibiotics during childhood. Thus, H pylori is a
major human residential organism that is becoming in-
creasingly less common.

Tropism of H pylori for the Human
Stomach

H pylori is highly adapted to colonize the human
stomach, whereas most other bacteria cannot persistently
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Figure 1. Major bacterial phyla
in the stomach and at diverse
anatomical sites.*24511 Stomach
1 depicts a stomach in which H
pylori is detected by conventional
methods, and Stomach 2 depicts
a stomach in which H pylori is not
detected.

Colon

colonize this niche. The major factors that limit bacterial
colonization of the human stomach are (1) acidity, (2)
peristalsis, (3) nutrient availability, (4) host innate and adap-
tive immunity, and (5) competing microbes. Specific fea-
tures of H pylori allow it to resist each of these stresses
(Table 1). H pylori resists acid by hydrolyzing urea to yield
ammonia and by regulating gene expression to respond to
changes in pH.2°-22 H pylori expresses multiple paralogous
outer membrane proteins (OMPs), many of which are phase
variable; several of these appear to bind to receptors on the
surface of gastric epithelial cells and could diminish the rate
of bacterial wash-out as a result of peristalsis.32* H pylori
has numerous mechanisms to obtain nutrients, including
the induction of tissue inflammation and the presence of
systems that facilitate transport and uptake of nutrients.
Innate and adaptive host immune responses are limited by
several secreted H pylori proteins (discussed in the next
section), and multiple systems counteract the actions of
reactive oxygen and nitrogen species.252¢ H pylori produces
antibacterial peptides that might reduce competition from
other microbes.?

Studies in rodent models have provided further insight
into the H pylori constituents required for gastric coloni-
zation. Approaches such as signature-tagged mutagenesis
and microarray tracking of transposon mutants have led
to the identification of >100 bacterial genes required for
gastric colonization.?8-30 The expression of several of
these genes is up-regulated during growth of H pylori in
the gastric environment.3!

H pylori exclusively colonizes gastrointestinal sites
overlying gastric mucosa.5-8 The development of atro-
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Table 1. Examples of H pylori adaptations that facilitate gastric colonization

Adaptation Function Study
Spiral shape Hydrodynamic movement Hazell et al*2
Polar fiagella Motility in the gastric niche Hazell et al*?
Flagellin structure Modification of TLR5 recognition site Andersen-Nissen et al**
Urease Resistance to gastric acidity Marshall et al2°

LPS structure

LPS Lewis antigens
Natural competence
Multiple adhesins
VacA

Lipid A with fow bioactivity

Inhibition of T cell activities

Products of cag PAI

Mimicry of host cell molecules
Ability to adapt to changing gastric conditions
Attachment to epithelium resists peristalsis

Signaling within gastric epithelium

Muotiala et al*3

Aspinall and Monteiro45

Baltrus et al®®

Mahdavi et al,23 llver et al?*
Gebert et al,*8Sundrud et al,*®
Boncristiano et al,3° Torres et al53
Guillemin et al,3% Odenbreit et al,3”
Viala et al®3

phic gastritis late in life (characterized by thinning of the
gastric mucosa and loss of gastric acidity) diminishes or
eliminates H pylori colonization.3? Potential reasons for
the specific association of H pylori with normal gastric
mucosal epithelium include a low pH requirement for
metabolic processes; dependence on specific nutrients,
mucins, or cell-surface components that are specific fea-
tures of gastric epithelium; or the inability to compete in
environments where other microbes are more abundant.
The reasons that H pylori variants have not arisen that
can breach the requirement for gastric epithelium are not
known, but we speculate that the biologic cost of the
necessary adaptations to increase the host tissue niche
exceeds the benefit to the organism, in terms of trans-
mission to new hosts, consistent with a Nash equilibrium.3?
At least in the past, when H pylori was so successful at
colonizing humans, niche expansion was not necessary
and was possibly deleterious. In the future, with an in-
creasingly narrow bottleneck for H pylori transmission,
there could be selection for variants that colonize a
broader range of epithelial surfaces; such variants might
be more readily transmitted to new hosts.

Biologic Factors That Promote the
Coexistence of H pylori and Humans

Most H pylori localize within the gastric mucus
layer and do not directly interact with host cells. How-
ever, some organisms adhere to gastric epithelial cells and
occasionally are internalized by these cells.>* Adherence
of H pylori to gastric epithelial cells stimulates numerous
signaling pathways,?> and many H pylori strains secrete
toxins or other effector molecules.3637 H pylori elicits a
humoral immune response,3® and tissue infiltration by
mononuclear and polymorphonuclear leukocytes occurs
in all humans who are persistently colonized.3® The host
inflammatory response to H pylori is relatively weak in
comparison to the response to many transient bacterial
pathogens, but the host response to H pylori is more
substantial and complex than that which occurs in re-
sponse to other intestinal luminal bacteria. Despite caus-
ing numerous alterations in the gastric environment and
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eliciting a host immune response, H pylori persistently
colonizes the human stomach for long time periods and
usually does not have adverse effects.#:41

What factors contribute to the stability of the H pylori-
host equilibrium? One salient factor is the localization of
H pylori within the gastric mucus layer, without any
substantial invasion of host tissue.#2 Another factor is the
synthesis of H pylori components that are highly adapted
to reduce the intensity of the host immune response. H
pylori lipopolysaccharide (LPS) is characterized by modi-
fications of the lipid A component that make it less
proinflammatory than LPSs from other gram-negative
bacterial species.*> H pylori flagella are poorly recognized
by TLRS (a component of the innate immune recognition
system), because of modifications in the TLRS recogni-
tion site.** Many H pylori strains express LPS O antigens
that are structurally related to Lewis blood group anti-
gens found on human cells.#* This molecular mimicry
could permit H pylori LPS to be recognized as a self-
antigen. Incorporating a modified form of cholesterol
into H pylori membranes and the coating of H pylori with
host molecules such as plasminogen might represent
additional types of antigenic disguise.*47

H pylori produces several factors that target host im-
mune cells. For example, many H pylori strains secrete a
protein (VacA) that targets human CD4* T cells, inhib-
iting the transcription factor nuclear factor of activated T
cells and inhibiting T-cell proliferation.*8-51 VacA targets
not only CD4% T cells, but it also inhibits antigen pre-
sentation by B cells? and disrupts the normal functions
of CD8* T cells, macrophages, and mast cells.53-5¢ Two
other H pylori proteins (arginase and y-glutamyl trans-
ferase) are also reported to cause alterations in T cells,57:58
and H pylori arginase down-regulates production of in-
ducible nitric oxide synthase by macrophages.>® In addi-
tion to the targeting of immune cells by the H pylori
proteins described above, H pylori causes numerous ad-
ditional effects on immune cells by mechanisms that
have not yet been elucidated.*! By targeting host immune
cells, H pylori can potentially down-regulate host re-
sponses and thereby maximize its persistence.
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Heterogeneity among H pylori

H pylori strains isolated from unrelated individu-
als exhibit a high level of genetic diversity (reviewed in
Blaser and Berg® and Suerbaum and Josenhansé!). Nu-
cleotide sequences of conserved genes are 92%-99% iden-
tical among different H pylori strains, but several H pylori
genes are more highly diverse in sequence.62-6¢ In addi-
tion to variation in the sequences of individual genes
among H pylori strains, there is considerable variation in
gene content. One study analyzed genomic DNA from 56
different H pylori strains with the use of array hybridiza-
tion methods and identified 1150 genes that were present
in all of the strains tested (thus representing a “core”
genome).55 In contrast, 25% of the 1531 genes analyzed
were absent from =1 of the 56 strains, indicating the
extensive plasticity of the H pylori genome.

H pylori has evolved highly effective systems for gener-
ating diversity.61:6¢ Mechanisms include lack of mismatch
DNA repair to maximize variationS” use of repetitive
DNA for intragenomic recombination to change pheno-
types, and natural competence for DNA uptake to facil-
itate acquisition of new genetic sequences. Gastric colo-
nization with more than 1 distinct H pylori strain is
common; this multiplicity of infection provides substrate
for acquisition of new genetic sequences and recombina-
tion events, which occur commonly.®® Efficient systems
for generating genetic diversity allow H pylori to adapt to
changing conditions within individual human stomachs
and also permit bacterial adaptation to the gastric envi-
ronments of new hosts.®?7° The simultaneous presence in
the stomach of multiple H pylori strains that can recom-
bine could permit the emergence of the most flexible and
robust bacterial populations; conversely, a decrease in the
multiplicity of strains in the stomach, associated with
socioeconomic advancement, might accelerate the loss of
H pylori.51.66

One of the most striking differences among H pylori
strains is the presence or absence of a 40-kb region of
chromosomal DNA known as the cag pathogenicity is-
land (PAI).”* One gene in the H pylori cag PAI encodes an
effector protein (CagA), whereas others encode proteins
that assemble into a type IV secretion apparatus that
translocates CagA into gastric epithelial cells.37.72 Within
gastric epithelial cells, CagA is phosphorylated by host
cell kinases.”> Both phosphorylated CagA and nonphos-
phorylated CagA cause numerous alterations in gastric
epithelial cells, including activation of the SH2 domain-
containing tyrosine phosphatase 2 and dephosphoryla-
tion of cellular proteins,’# alterations in cell structure
and cell motility,”>7¢ alterations of tight junctions,”” al-
terations in cell scattering and proliferation,”® activation
of B-catenin,” and perturbation of epithelial cell differ-
entiation and polarity.8%#1 In addition to the effects on
gastric epithelial cells that result from actions of CagA,
products of the cag PAI contribute to CagA-independent
alterations in gastric epithelial cells, including stimula-
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tion of the synthesis of interleukin-8, a proinflammatory
cytokine.82:83

Most H pylori strains secrete a protein known as VacA
by an autotransporter mechanism (reviewed in Cover and
Blanke®4). The VacA protein was originally identified
based on its capacity to cause vacuolation in cultured
human epithelial cells,¢ but multiple other activities of
this protein have subsequently been identified.3* All H
pylori strains contain a vacA gene, but there is marked
variation among strains in vacA nucleotide sequences.
vacA alleles have been classified into separate families,
based on diversity at several loci (designed s, i, m); vari-
ations in sequence are associated with variations in VacA
functional activity in cell culture assays.5285-87 Active
forms of VacA cause detectable alterations in gastric
epithelial cells and immune cells, whereas inactive forms
of VacA (predominantly type s2) lack activity in most in
vitro cell culture assays.62:888% Effects of active VacA on
gastric epithelial cells include alterations of late endo-
cytic compartments,®® increased plasma membrane per-
meability,®! increased mitochondrial membrane perme-
ability,®2%3 and apoptosis®* (reviewed in Cover and
Blanke®4). Most VacA-induced alterations are attributable
to insertion of VacA into cell membranes, oligomeriza-
tion, and formation of anion-selective channels.91,95-97
Because the inactive s2 form of VacA is well conserved, it
is likely to have a functional role that it not yet under-
stood.

Individual H pylori strains differ considerably in the
expression and binding properties of OMPs that function
as adhesins. In particular, there are differences among
strains in the expression and binding properties of BabA
(an OMP that binds the fucosylated Lewis b receptor on
gastric epithelial cells) and SabA (an OMP that binds to
sialyl Lewis X receptors).2324 These differences among
strains in adhesin expression result in strain-specific vari-
ations in binding of H pylori to gastric epithelial cells.
There also are differences among strains in the expression
of the outer membrane OipA (HopH) because of phase
variation, which could result in strain-specific variations
in H pylori-induced signaling in gastric epithelial cells.®®

H pylori strains can be broadly categorized into 2
groups: strains that express multiple factors that interact
with host tissue (including proteins encoded by the cag
PAL, active forms of VacA, and OMPs such as BabA) and
strains that lack these factors.6299.100 Strains with inter-
mediate properties have been identified, although less
frequently than expected if the distribution of H pylori
virulence factors were completely random. Recent studies
indicate that CagA and active forms of VacA have recip-
rocal or antagonistic actions; consequently, there may be
selection for strains that encode both of these factors or
strains that lack both factors.101-103

H pylori strains that express multiple “interaction fac-
tors” (CagA*, s1-VacA*, BabA™ strains) are predicted to
be highly interactive with the host, whereas strains that
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Figure 2. Interactions of H pylori with human gastric mucosa. Within the gastric mucosa, most H pylori localize within the gastric mucus layer and
do not directly adhere to gastric epithelial cells. VacA, secreted by nonadherent bacteria, can cause alterations in several cell types, including gastric
epithelial cells and T cells.84 Binding of H pylori to gastric epithelial ceils is mediated by several bacterial adhesins, including BabA and SabA.23.24
Adherent H pylori assemble a type IV secretion apparatus (comprising proteins encoded by genes in the cag PAl), which translocates the CagA
protein into gastric epithelial cells.37.72 Within gastric epithelial cells, CagA is phosphorylated by host cell kinases; both phosphorylated and
nonphosphorylated CagA can cause numerous cellular alterations. Strain-specific variations in the expression of these bacterial factors are an
important determinants of interactions between H pylori and the human host.

lack these factors would be relatively noninteractive (Fig-
ure 2). Concordant with these predictions, CagA™*, s1-
VacA*, and BabA™" strains are associated with increased
gastric mucosal inflammatory cell infiltration and in-
creased gastric epithelial injury, compared with strains
that do not express these factors.?>1%4 In addition, the
colonization density of CagA™, sl-VacA*, and BabA*
strains is typically higher than that of strains that do not
express these factors.10

H pylori strains expressing multiple interaction factors
and strains that lack these factors might occupy different
niches in the gastric environment, or each could have
selective advantages at different times during prolonged
colonization. Cutrrently, people in developing countries
are predominantly colonized by cagA* strains, whereas
those in many developed countries are colonized by an
almost equal proportion of cagA™ and cagA~ strains.100.106
This suggests that there is an accelerated loss of cagA™
strains from some populations.’® cagA* strains induce
the production of B-defensin 2 and other antimicrobial
effectors to a greater extent than cagA~ strains,'®” which
might render cagA* strains more susceptible to eradica-
tion from the host. In addition, cagA™* strains seem to be
more efficiently eradicated by antibiotics than are cagA~
strains.!08

H pylori and Gastroduodenal Disease

Although H pylori typically colonizes the human
stomach for many decades without adverse conse-
quences, the presence of H pylori is associated with an
increased risk of several diseases, including peptic ulcers,
noncardia gastric adenocarcinoma, and gastric mucosa-
associated lymphoid tissue (MALT) lymphoma (reviewed
in Suerbaum and Michettil®® and Atherton!19). What
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factors account for the development of these diseases in
subsets of people who harbor H pylori?

The risks of peptic ulcer disease and noncardia gastric
adenocarcinoma are determined in part by characteristics
of the H pylori strain with which an individual is colo-
nized. Most of the H pylori polymorphisms associated
with various disease risk are found in genes that encode
bacterial products that interact with host tissue. Numer-
ous studies, particularly in Western countries, have
shown that cag PAI-positive H pylori strains are associated
with a higher risk of peptic ulcer disease, premalignant
gastric lesions, and gastric cancer than are strains that
lack the cag PAL100.111-114 Moreover, the number of ty-
rosine phosphorylation (EPIYA) motifs in CagA proteins
correlates with gastric cancer risk.115116 Strains that ex-
press forms of VacA that are active in vitro (eg, s1/il/m1)
are associated with a higher risk of disease than are strains
that express inactive forms of VacA.6285112.117 Similarly,
strains that express BabA and OipA (HopH) OMPs are
also associated with a higher risk of disease than are
strains that lack these factors.®®118 On the basis of data
from human epidemiologic studies, it is difficult to de-
termine which of these bacterial factors is most closely
linked to adverse disease outcomes, because these inter-
action factors tend to cluster together in H pylori
strains.62.99,117

Studies involving gerbil and transgenic mouse models
suggest that products of the cag PAI (including CagA)
have an important role in contributing to adverse disease
outcome.!?-122 Some studies in rodents suggest that
products of the cag PAI and VacA enhance the ability of
H pylori to colonize the stomach,!23124 but other studies
have not reached the same conclusions.'?’ Notably, there
are limitations of various animal models in replicating
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the human host environment. For example, some H pylori
factors (such as those encoded by the cag PAI) are present
on genetically metastable elements that are commonly
deleted during colonization of mice.!126:127 Furthermore,
human T cells are susceptible to VacA, whereas mouse T
cells are not.51.128

Host and environmental factors also are important
determinants of H pylori-associated disease risk. For ex-
ample, male sex, specific interleukin-18 haplotypes, and
various other proinflammatory gene polymorphisms are
associated with an increased risk of noncardia adenocar-
cinoma.!?>13% There might be synergy between bacterial
and host polymorphisms in determining disease risk.112
Environmental factors that may influence the risk of
gastric cancer include the level of dietary salt intake,
intake of fresh fruit and vegetables, and the presence of
various parasitic infections.!31-133

The use of antibiotics to eradicate H pylori has dramat-
ically altered the incidence and natural history of peptic
ulcer disease.’3* H pylori resistance to macrolides, fluoro-
quinolones, and nitroimidazoles is gradually increasing
because of the widespread use of these antibiotics in the
community for multiple indications. Increasing antibi-
otic resistance decreases the efficacy of current triple-
drug treatment regimens for H pylori and may portend
future difficulties in our ability to treat peptic ulceration
with antibiotics.

Potential Benefits of H pylori

H pylori colonization is associated with many bi-
ologic costs to the host; conversely, a growing body of
literature suggests that the absence of H pylori might also
be associated with an increased risk of various diseases.
An absence of H pylori could indicate that an individual
was never colonized or that the organism was present
earlier in life and subsequently eradicated. The idea that
H pylori might actually confer benefits to humans has
engendered considerable controversy among investiga-
tors, but we review here the current data and discuss the
potential importance of health benefits that might be
afforded by H pylori. Not surprisingly, most of the po-
tential benefits (as with the costs) come from cagA*
strains, which are the most interactive with their human
hosts. In 1998, one of us used the term acagia to describe
the absence of cagA* H pylori, a condition associated with
disease risks that differ from those associated with the
presence of cagA* H pylori.135

Esophageal Diseases

Inverse associations are observed between the
presence of H pylori (especially cagA* strains) and disor-
ders such as gastroesophageal reflux disease, Barrett’s
esophagus, and esophageal adenocarcinoma,!36-140 sug-
gesting a protective role of H pylori. Depending on the
study, the odds ratios for the presence of esophageal
disorders in persons with cagA* strains range as low as
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0.2 (the inverse of an odds ratio of 5.0). One potential
mechanism for this effect could be that H pylori coloni-
zation diminishes gastric acidity; therefore, during reflux
episodes, the acidic refluxate might be more damaging to
the esophageal epithelium of H pylori-negative than of H
pylori-positive persons. Another hypothesis is that H py-
lori alters the expression of multifunctional gastric hor-
mones that have effects on esophageal tissue.41142 The
presence or absence of H pylori might also affect other
microbiota of the stomach!t!2 or the distal esopha-
gus,>143 which may have an effect on esophageal mucosal
integrity. Better understanding of the mechanisms that
underlie the inverse relations between H pylori and esoph-
ageal disorders will permit improved assessment of risk
and could lead to new approaches for prevention of these
diseases.

Asthma and Allergic Disorders

As H pylori prevalence has declined, the incidence
of asthma and related disorders, especially those that
appear during childhood, has risen.!44 Asthma is part of
an allergy syndrome that can include rhinitis and cuta-
neous atopy (also called eczema) and is generally consid-
ered to arise from dysfunctional immune responses to
common allergens. The absence of H pylori is associated
with an increased risk of allergies!45-147; this inverse as-
sociation is specific for childhood-onset, but not later-
onset, asthma and is most pronounced for cagA* H pylori
strains. The reduced incidence of colonization with cagA*
strains!® (increased incidence of acagia) is consistent with
increased incidences of asthma and allergic disorders.!3%
It is possible that the presence of cagA* H pylori in the
stomach leads to gastric recruitment of T-cell popula-
tions, including regulatory T cells, that ultimately affect
the activities of T cells present in other mucosal and
cutaneous sites.!4814% Another hypothesis is that H pylori-
induced alterations in gastric hormone expression con-
tribute to the pathogenesis of asthma and allergic disor-
ders.

Infectious Diseases

The hypothesis that H pylori colonization might
confer protection against various other infectious dis-
eases has recently been of interest. In support of this
concept, a recent study has shown that another chronic
infection (latent herpesvirus) conferred resistance to in-
fection with 2 bacterial pathogens in a mouse model.15°
Several studies have suggested that H pylori protects
against diarrheal diseases,!51:152 although this relation
has not been consistently obsetved.!5> Mechanisms for
protection might include production of antibacterial
peptides by H pylori or the host,?7:197 activating the im-
mune system as an adjuvant,'4 competition for niche, or
hypergastrinemia leading to maintenance of gastric acid-
ity throughout childhood. Recent studies in West Africa,
where tuberculosis is endemic, have indicated that H
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pylori-positive persons are less likely to reactivate latent
tubercular infections.!>* By providing partial protection
against infectious diseases common in childhood, there
would be strong selection for the presence of H pylori. If
H pylori increased morbidity or mortality because of other
infectious diseases, then there would have been a very
powerful selection against its presence. As the incidence
of childhood infectious diseases declines, so too would
the positive selective pressure for maintenance of H pylori
in human populations. The introduction of clean water
supplies, improved sanitation, and less crowding into
human populations have resulted in a decreased inci-
dence of lethal diarrheal diseases; these changes would be
expected to result in reduced H pylori transmission and
reduced selection for maintenance of H pylori.

Effects on Metabolism

The mammalian stomach produces approxi-
mately 5%-10% of the body’s leptin and 60%-80% of
ghrelin. Leptin and ghrelin are multifunctional hor-
mones that help to regulate body weight.15¢ Is H pylori
involved in the physiologic regulation of these hor-
mones? Multiple studies have shown that H pylori-posi-
tive persons produce lower amounts of ghrelin than do H
pylori-negative persons,'57:158 and H pylori eradication is
associated with a subsequent increase in ghrelin produc-
tion.15%:160 Because ghrelin has effects throughout the
body, it is likely that the presence or absence of H pylori
will have substantial long-term metabolic consequences.!6?
The effects on leptin are less clear-cut, with apparently
conflicting results, 142162163 which could reflect many
variables, such as a subject’s age, medications, and extent
of gastric inflammation. Regardless of the specific find-
ings, a generation of children is currently growing and
developing without the contribution of H pylori to gastric
physiology; the consequent alterations in ghrelin and
leptin production may affect overall energy homeostasis.

H pylori as an Indicator of Changes in
Human Microbiota

Are the apparent benefits associated with H pylori
colonization directly attributable to the presence of H
pylori, or is H pylori simply a marker or “indicator organ-
ism” for exposure to other bacteria or foreign antigens
that stimulate the immune system? Just as H pylori is
disappearing as a consequence of modern lifestyles (eg,
improved sanitation and exposure to antibiotics), other
organisms (including those that are currently unknown
or unappreciated by medical science) might be disappear-
ing in parallel. H pylori might be a marker or indicator
organism for a more widespread change in human mi-
croecology.'é* Some of the disease consequences associ-
ated with the lack of H pylori (and specifically acagia)
might reflect this phenomenon. At the least, H pylori is a
marker for our changing (or disappearing) microbiota; at
the most, its disappearance is central to these diseases. As
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our understanding of the broad effects associated with
acagia continues to increase, it is likely that we will dis-
cover examples of phenotypes that are directly attribut-
able to the absence of H pylori, as well as phenotypes for
which H pylori is an indicator organism.

Conclusions

The rediscovery of gastric microbiota and the first
successful culture of H pylori in 1982 by Marshall and
Warren opened a new chapter in human medicine.!6
Early work, showing a relation between H pylori and
peptic ulcer disease, changed medical practice.!** The
finding that H pylori also increased the risk of gastric
adenocarcinoma bolstered the view that H pylori is a
human pathogen. However, it is now becoming clear that
the progressive disappearance of H pylori in the 20th and
21st centuries, abetted by modern medical practices (in-
cluding overuse of antibiotics in childhood), may have
consequences. These consequences may include an in-
creased risk of gastroesophageal reflux disease and its
sequelae, childhood asthma, and metabolic disorders. If
continued studies confirm the findings reported thus far,
then our medical approaches to H pylori will need to
change. These next years will be an exciting period in
which the relation between H pylori and humans becomes
more thoroughly understood.
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