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Perception of emotional stimuli alters the perception of pain. Although facial expressions are powerful
emotional cues – the expression of pain especially plays a crucial role for the experience and communi-
cation of pain – research on their influence on pain perception is scarce. In addition, the opposite effect of
pain on the processing of emotion has been elucidated even less. To further scrutinize mutual influences
of emotion and pain, 22 participants were administered painful and nonpainful thermal stimuli while
watching dynamic facial expressions depicting joy, fear, pain, and a neutral expression. As a control con-
dition of low visual complexity, a central fixation cross was presented. Participants rated the intensity of
the thermal stimuli and evaluated valence and arousal of the facial expressions. In addition, facial elec-
tromyography was recorded as an index of emotion and pain perception. Results show that faces per se,
compared to the low-level control condition, decreased pain, suggesting a general attention modulation
of pain by complex (social) stimuli. The facial response to painful stimulation revealed a significant cor-
relation with pain intensity ratings. Most important, painful thermal stimuli increased the arousal of
simultaneously presented pain expressions, and in turn, pain expressions resulted in higher pain ratings
compared to all other facial expressions. These findings demonstrate that the modulation of pain and
emotion is bidirectional with pain faces being mostly prone to having mutual influences, and support
the view of interconnections between pain and emotion. Furthermore, the special relevance of pain faces
for the processing of pain was demonstrated.

� 2013 International Association for the Study of Pain. Published by Elsevier B.V. All rights reserved.
1. Introduction

Emotions and pain are highly interconnected [37] and repre-
sented in widely overlapping networks of the human brain [49].
These shared neural networks most likely constitute the biological
substrates of pain-modulating effects of emotions [51].

The influence of various affective stimuli like affective pictures
[17,18,28,36], pain-related pictures [11], or odors [48] on pain has
been demonstrated such that negative emotions lead to increased
pain perception, while positive emotions result in decreased pain
perception. However, a crucial feature in nonverbal emotion com-
munication – facial expressions – has been widely neglected so far.
Only recently, emotional compared to neutral facial expressions
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have been demonstrated to increase pain perception accompanied
by alterations of pain-related brain oscillations [39]. Similarly, pain,
compared to neutral, expressions were found to augment pain per-
ception [27], however, the opposite effect of pain on emotion was
not quantified.

Research on the impact of pain on emotion processing is rather
scarce. One study found that pain led to decreased pleasantness rat-
ings of positive pictures, while negative pictures were unaffected
[12]. Likewise, it was observed that pain disrupts performance in
an emotional evaluation task for happy faces only, while fearful
faces remained unaffected [10]. Also, a current study addressing
the influence of pain on face processing showed attention effects
of pain, but no modulation of emotion-related brain potentials [52].

Pain and emotion both come along with distinct facial expres-
sions [8,19,32,33,54]. Pain expressions, in particular, are supposed
to be of great importance for social interactions [3,14] and for the
communication of danger and sorrow. Moreover, pain faces receive
elevated cortical processing compared to other facial expressions
[13,35], which points at a special relevance of facial pain expressions.
Elsevier B.V. All rights reserved.
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However, the influence of pain faces on pain processing and the
opposite effect has not yet been systematically investigated.

Consequently, in the present study we aimed at elucidating the
mutual influence of pain and emotional face processing, with a
special focus on the expression of pain. Spontaneous, subtle facial
reactions can be reliably measured by facial electromyography
(EMG) in response to emotional stimuli, thus providing a suitable
measure of emotion processing on the one hand [5,7,25,35,50]
and pain processing on the other hand [23,27]. Therefore, we re-
corded facial EMG in response to dynamic facial expressions of
pain, fear, joy, and a neutral expression during painful and non-
painful thermal stimulation. To disentangle emotional from atten-
tional pain modulation, we also presented fixation crosses as a
low-level control condition. To document pain modulation by
emotion, each thermal stimulus was to be rated regarding its
intensity, while alterations of emotion processing should be re-
flected in ratings of valence and arousal of each video. In addition,
to control for potential modulation by state or trait variables, psy-
chometric key measures were assessed. We assumed that negative
emotional faces result in increased pain perception, with pain faces
having the greatest effect. In addition, thermal heat pain was
hypothesized to alter implicit (EMG) and explicit (valence and
arousal ratings) measures of emotion processing.

2. Method

2.1. Participants

Twenty-four participants were recruited from the University of
Würzburg and received course credit or €12 as compensation. None
of them had taken any analgesic medication or alcohol for at least
12 hours prior to the test session (self-report). Two participants
were excluded from further analysis due to psychopharmacological
medication and vision disorder. All 22 remaining subjects (age
M = 21.47 years, SD = 2.21; 17 women) had normal or corrected-
to-normal vision, and no current or prior history of chronic pain, or
neurological or psychiatric disorders (self-report). Participants were
given a detailed explanation of the experimental procedure and
signed a written informed consent before participating in the study.
Participants filled out questionnaires on candid psychological vari-
ables that were found to impact emotion processing, such as state
and trait anxiety (State-Trait Anxiety Inventory-T/S [24,42]), altered
pain processing such as pain catastrophizing (Pain Catastrophizing
Scale [29,43]), and that could have an influence on pain-related as
well as emotion-related measures, such as dispositional empathy
(Saarbrücker Persönlichkeitsfragebogen, German version of the
Interpersonal Reactivity Index [4,31]). Furthermore, sociodemo-
graphic information and personal attitudes towards pain were col-
lected. The experimental procedure was approved by the
institutional review board of the medical faculty of the University
of Würzburg.

2.2. Video stimuli

Affective stimuli consisted of joy, pain, fear, and neutral facial
expressions (displayed by 4 male and 4 female actors) that were ta-
ken from a database of 1-second video clips [40]. A total of 128 videos
and, additionally, 32 control trials (fixation cross) were randomly
shown.
2.3. Thermal pain

Thermal heat stimuli were delivered using a Somedic MSA ther-
mal stimulator (Somedic Sales AB, Hörby, Sweden) and a Peltier
thermode with an active surface of 25 � 50 mm. The thermode
was attached to the volar forearm of the nondominant hand. The
individual thermal pain thresholds were assessed by applying 10
trials of gradually increasing temperature (1�C/second) from a
baseline of 32�C; participants were asked to stop the stimulus deliv-
ery by a button press as soon as they felt pain. The average pain
threshold temperature was M = 42.48�C, SD = 2.87. The individual
thermal pain threshold was used as painful stimulus, whereas the
same temperature minus 2�C was used as nonpainful stimulus in
the following experimental session. During the actual experiment,
heat stimuli were applied at a heating rate of 5�C/second starting
from a baseline that was defined as 10�C lower than the individual
pain threshold temperature. After 50 and 100 trials, the experi-
menter changed the position of the thermode on the participant’s
forearm (position order was counterbalanced across participants).

2.4. EMG measurement

EMG was recorded from M. corrugator supercilii, M. orbicularis
oculi, and M. zygomaticus major on the left side of the face [6] using
bipolar montages of 13/7-mm Ag/AgCl surface-electrodes accord-
ing to the guidelines established by Fridlund and Cacioppo [9].
The EMG raw signal was measured with a V-Amp amplifier (Brain
Products Inc., Munich, Germany) at a sampling rate of 1000 Hz.
Raw signals were rectified and filtered off-line with a 30-Hz
high-pass, a 500-Hz low-pass, a 50-Hz notch, and a 125-ms moving
average filter. Visual stimulus-evoked EMG activity was scored as
the mean activity during 2 time windows (0–1000 ms and 1000–
2000 ms after video stimulus onset) as change in activity from a
1000-ms prestimulus baseline. Intervals were chosen due to a po-
tential response delay when using dynamic stimuli [50], which in
the present case show the peak of the target expression close to
the stimulus end at about 1000 ms. Pain-evoked EMG activity
was scored as the mean activity during 0 ms and 1000 ms, and
1000–2000 ms after thermal pain onset as change in activity from
a 1000-ms prestimulus baseline. For the pain responses during fix-
ation cross trials, the same intervals were chosen according to the
time window when thermal stimulation reached the target tem-
perature (0–1000 ms) and at a later period of equal length to mea-
sure slower facial responses to pain.

2.5. Procedure

After arrival, participants signed the informed consent, an-
swered sociodemographic questions, and filled out the question-
naire on state anxiety. Subsequently, the individual pain
threshold was assessed. After EMG electrodes were attached, the
participants were instructed about the experimental procedure.
The thermode was attached to their left forearm and participants
were given a stop device to interrupt the thermal stimulation
whenever they felt the heat being too painful (actually, this was
never the case). Subsequently, the participants completed 3 train-
ing trials (including the painful thermal stimulation and the rating
procedure for valence, arousal, and pain intensity), and were in-
structed to attentively watch the screen during the experiment, be-
fore the main experiment was started. Each trial consisted of a
central fixation cross, which was presented for 6 seconds until
the thermal stimulus reached the target temperature (thermal
stimulation began 1.4 seconds after trial onset during painful trials
and 2 seconds after trial onset during nonpainful trials in order to
synchronize the time point when the temperature reached target
level and the video stimulus began). Then the video stimulus or
the fixation cross (control trials) was presented for 1 second fol-
lowed by a blank screen for 0.5–2.5 seconds. After each trial, par-
ticipants were asked to rate the video with regard to valence
(�4 = very unpleasant, 0 = neutral, and +4 = very pleasant) and
arousal (1 = not at all arousing and 9 = very arousing), and the ther-
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mal stimulus on a computerized visual analogue scale (0 = no pain
and 100 = unbearable pain). All trials (facial video stimuli as well as
control trials) were separated by an intertrial interval (2.8–5.2 sec-
onds) and presented in a fully randomized sequence. A schematic
of the trial structure is given in Fig. 1. Overall, the experiment con-
sisted of 160 trials (128 video clips and 32 fixation crosses); in 50%
of the trials of each condition the painful, and in 50% of the other
trials the nonpainful, thermal stimulus was delivered. After the
experiment the participants filled out the questionnaires on pain
catastrophizing, pain anxiety, trait anxiety, and empathy.

2.6. Statistical analysis

The affective ratings of the videos were analyzed separately for
valence and arousal by employing 2-factorial repeated-measures
analyses of variance (ANOVAs) with the within-subjects factors fa-
cial expression (neutral, joy, fear, pain) and pain intensity level
(painful vs nonpainful). Mean pain intensity ratings were analyzed
using repeated-measures ANOVAs with the within-subjects factors
stimulus (5 levels: 4 facial expressions and fixation cross) and pain
level (painful vs nonpainful). Mean EMG amplitudes were analyzed
in 2 separate analyses: first, a repeated-measures ANOVA with the
within-subjects factors facial expression (neutral, joy, fear, pain),
pain intensity level (painful vs nonpainful), and time (0–1000 ms
after video onset vs 1000–2000 ms after video onset) was applied
to investigate effects of painful vs nonpainful heat stimulation on
an implicit measure of emotion processing (ie, emotion-congruent
muscle responses). Second, for low-level control trials (fixation
cross), a repeated-measure ANOVA containing the within-subjects
factors pain intensity level (painful vs nonpainful) and time (0–
1000 ms after fixation cross onset vs 1000–2000 ms after fixation
cross onset) was applied to investigate the facial muscle response
to pain in a low-level control condition. This procedure allows
for determining facial muscle responses as a mere result of the
painful stimulation without any additional contamination by emo-
tion-congruent facial reactions [50]. When necessary, Greenhouse-
Geisser corrections of degrees of freedom were used. Post hoc com-
parisons were realized using planned contrasts or pair-wise t-tests.
Correlational analysis between z-standardized EMG responses dur-
ing control trials (fixation cross) and pain intensity ratings were
conducted. Significance level was defined as P < 0.05.

3. Results

3.1. Affective ratings

The analysis of arousal ratings revealed a significant main effect
of facial expression F(3,63) = 37.02, P < 0.001, gp

2 = .638, indicat-
Fig. 1. Schematic of trial structure: participants were shown a central fixation cross un
expression [40] or a central fixation cross, respectively; participants were asked to rate
ing that all emotional facial expressions were rated as more arous-
ing compared to neutral expressions (all Ps < 0.001). Pain faces did
not significantly differ from joy faces, but were rated as more
arousing in comparison to fear, F(1,21) = 6.24, P = 0.021,
gp

2 = .229. Joy and fear did not significantly differ from each other,
F(1,21) < 1. Furthermore, higher arousal ratings of the videos dur-
ing painful compared to nonpainful stimulation were observed,
F(1,21) = 10.17, P = 0.004, gp

2 = .326.
A significant interaction of facial expression and pain intensity

level, F(3,63) = 3.50, P = 0.021. gp
2 = .143, was found due to higher

arousal ratings under painful in comparison to nonpainful thermal
stimulation for fearful, t(21) = 2.10, P = 0.049, and especially for
painful facial expressions, t(21) = 3.10, P = 0.006, only. Mean arou-
sal and valence ratings and SEM are given in Fig. 2.

The analysis of valence ratings revealed a significant main effect
of facial expression, F(3,63) = 275.75, P < 0.001, gp

2 = .93, with
pain expressions being rated as most unpleasant, followed by fear,
neutral, and joy being rated as most pleasant (all comparison
Ps < 0.001). Valence ratings were unaffected by thermal stimula-
tion, F(1,21) = 1.10, P = 0.31, gp

2 = .05.

3.2. Pain ratings

Pain intensity ratings were higher for painful thermal stimula-
tion, F(1,21) = 43.06, P < 0.001, gp

2 = .67, and modulated by the
concurrently presented visual stimulus, F(4,84) = 5.73, P < 0.001,
gp

2 = .21. Moreover, a significant interaction of pain intensity level
and visual stimulus points at a differential modulation of pain per-
ception by the different visual stimuli, F(4,84) = 15.83, P < 0.001,
gp

2 = .43. The painful thermal stimulus was rated most intense
during the presentation of a fixation cross, compared to the facial
video stimuli depicting expressions of joy, fear, pain, or a neutral
expression (all Ps < 0.01). Whereas under nonpainful thermal stim-
ulation, the intensity of the stimulation was rated as significantly
lower while watching a fixation cross in comparison to videos
showing fear, or pain expressions, t(21) = 4.46, P < 0.001, and
t(21) = 2.12, P = 0.046, respectively (Fig. 3). Most important, only
painful facial expressions selectively led to higher pain intensity
ratings compared to all other emotional and neutral facial expres-
sions during high painful stimulation (all Ps < 0.03). Mean pain
intensity ratings during the 2 thermal conditions separated for
the different presented stimuli are given in Fig. 3.

3.3. EMG responses to facial expressions

M. corrugator activity was higher under painful compared to
nonpainful thermal stimulation, F(1,20) = 4.81, P = 0.04, gp

2 = .19.
Also, M. corrugator activity was higher in the second compared to
til thermal stimulation reached target temperature, followed by a dynamic facial
valence and arousal of the videos and pain intensity of the thermal pain stimuli.



Fig. 2. Mean valence (�4 to +4) and arousal (1 to 9) ratings (+SEM) for dynamic neutral, joy, fear, and pain expressions, separately per pain condition; pain, and fear were
rated as more arousing during painful compared to nonpainful stimulation; ⁄P < 0.05; ⁄⁄P < 0.01.

Fig. 3. Mean pain intensity ratings for each facial expression and the control
condition; for painful stimulation, pain ratings were increased during control trials
(fixation cross) compared to all video stimuli, revealing pain modulation by
attention allocation; during presentation of pain faces, pain ratings were higher
compared to all other facial expressions revealing emotion-specific modulation of
pain; ⁄P < 0.05; ⁄⁄P < 0.01. VAS = visual analogue scale.
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the first time interval after video onset, F(1,20) = 5.54, P = 0.029,
gp

2 = .217, and was modulated by facial expressions,
F(3,60) = 16.38, P < 0.001, gp

2 = .450, such that in response to joy
faces, M. corrugator was significantly relaxed compared to all other
emotion expressions, all Ps < 0.003. These effects were further
qualified by a significant interaction of time and pain intensity le-
vel, F(1,20) = 7.94, P = .011, gp

2 = .28, indicating higher relaxation
in the second time interval (1000–2000 ms) under nonpainful
compared to painful stimulation. Additionally, a significant inter-
action of time and facial expression, F(1,20) = 17.90, P < 0.001,
gp

2 = .47, revealed that the M. corrugator was significantly more re-
laxed to joy faces in the second compared to the first time interval,
t(21) = 4.26, P < 0.001, and marginally significantly less deactivated
for fearful expressions during the second time interval compared
to the first, t(21) = 2.03, P = 0.055.

For zygomaticus major, a marginally significant main effect of
pain intensity level, F(1,21) = 3.25, P = 0.086, gp

2 = .13, suggests
more activation under painful compared to nonpainful stimulation.
A significantly higher activation in the second compared to the first
time interval was observed, F(1,21) = 15.31, P = 0.001, gp

2 = .42. No
effects of facial expressions were found.

Pain level had no general influence on M. orbicularis activity,
F(1,21) = 2.22, P = 0.15. gp

2 = .10. Generally, M. orbicularis oculi
was stronger activated in the second compared to the first time
interval, F(1,21) = 64.12, P < 0.001, gp

2 = .75. A significant interac-
tion of time and facial expression F(3,63) = 5.61, P = 0.017,
gp

2 = .211, was followed-up by 2 separate analyses for each time
interval, and revealed a significant effect of facial expression only
for the second interval, F(3,63) = 3.82, P = 0.05, gp

2 = .154. Planned
contrasts showed that during the second interval, M. orbicularis
was more activated in response to joy than to neutral faces,
F(1,21) = 6.38, P = 0.02, gp

2 = .233. No differences were found for
other planned comparisons. For an overview of all EMG results in
response to the different emotional faces, see Fig. 4.

3.4. EMG responses to pain (fixation cross)

M. corrugator activity was neither influenced by pain level nor
showed changes over the 2 time intervals, all F-values < 1. The anal-
ysis of M. zygomaticus activity revealed an almost significant inter-
action of time and pain level, F(1,21) = 4.22, P = 0.053, gp

2 = .167.
Post hoc comparisons revealed a tendency of stronger zygomaticus
activation to painful compared to nonpainful thermal stimulation
in the second interval, t(21) = 1.86, P = 0.077 (Fig. 5).

The analysis of orbicularis activity revealed a significant main ef-
fect of time, F(1,21) = 16.36, P = 0.001, gp

2 = .44, and a significant
main effect of pain level, F(1,21) = 5.04, P = 0.036, gp

2 = .194. These
effects were further qualified by a significant interaction,
F(1,21) = 6.39, P = 0.020, gp

2 = .23. Post hoc comparisons showed
significantly stronger M. orbicularis activation in response to painful
compared to nonpainful thermal stimulation, t(21) = 2.62, P = 0.016.

3.5. Correlation of standardized EMG responses and pain intensity
ratings

Correlation analysis of facial muscle responses during control
trials (fixation cross) and pain ratings for painful thermal stimula-
tion revealed a significant linear relationship between zygomaticus
major activity and pain intensity ratings, r = 53, P = 0.01 (n = 22).
For orbicularis activity, this correlation was only marginally signif-
icant, r = �38, P = 0.08 (n = 22), whereas for corrugator activity, no
relation to pain ratings was found, r = �.31, P = 0.17 (n = 21). No
correlations were found for nonpainful thermal stimulation with
respect to all facial muscles.

3.6. Psychological traits

Correlational analysis showed no association between measures
of emotion processing (facial EMG, valence, and arousal ratings) or



Fig. 4. Mean facial muscle activity for Musculus zygomaticus major, M. corrugator supercilii and M. orbicularis oculi in response to dynamic facial expressions (neutral, joy, fear,
and pain), under painful vs nonpainful thermal stimulation; plots are separated for the first and second time interval after stimulus onset (0–1000 ms; 1000–2000 ms), and
level of thermal stimulation (painful vs nonpainful).
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pain processing (facial EMG and intensity ratings), and psychomet-
ric measures (state and trait anxiety, pain catastrophizing,
empathy).
4. Discussion

How does pain influence the processing of dynamic facial
expressions and – in contrast – how does the perception of facial
expressions influence pain perception? In the current study we
combined measures of face and pain perception within the same
paradigm to scrutinize these questions. The results show a modu-
lation of pain perception by the emotional content of facial expres-
sions such that highest pain ratings to painful thermal stimuli were
obtained while watching faces of pain compared to other facial
expressions. In addition, the results suggest an attentional effect
of visual stimulation on pain in general, since pain ratings were de-
creased when watching face videos compared to a simple fixation
cross under painful thermal stimulation. These results point at two
different processes: (1) a general effect of attention allocation,



Fig. 5. Mean facial muscle activity for M. zygomaticus major, M. corrugator supercilii, and M. orbicularis oculi during control trials (central fixation cross) in response to painful
stimulation; plots are separated for the first and second time interval after stimulus onset (0–1000 ms; 1000–2000 ms), and level of thermal stimulation (painful vs
nonpainful).
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demonstrating that any complex visual stimulus (eg, a face) with-
draws attentional resources from the pain stimulus and (2) an
emotion-specific modulation of pain perception by faces express-
ing pain. In addition, affective ratings of the face videos showed a
modulation by pain such that perceived arousal of negative facial
expressions, especially pain faces, was augmented under painful
thermal stimulation. Taken together, these findings demonstrate
mutual effects of pain and emotion processing. The EMG record-
ings revealed that facial muscle activity to painful thermal stimu-
lation was increased in M. orbicularis oculi, and M. zygomaticus
major activity was positively correlated with subjective pain rat-
ings. These findings underscore the notion that facial reactions to
pain may serve as an indicator of subjective pain experiences.

4.1. Pain modulation by emotion and attention

So far, little evidence has been gathered on the capacity of emo-
tional faces to modulate pain perception. One study found emo-
tional, compared to neutral, faces to increase pain perception,
supporting earlier findings of pain modulation by emotion [39].
Surprisingly, happy faces also increased pain perception, which is
discussed with regard to a potential ambiguity of happy faces in
the context of pain, for example, when seeing others’ pain elicits
schadenfreude in bystanders. Similarly, we also did not find any
pain reduction in response to happy, compared to neutral, facial
expressions. As expected, facial pain expressions have the greatest
impact on pain perception compared to all other facial expressions.
This is in line with findings that hypnotic induction of a pain-re-
lated negative affect leads to increased pain perception [34]. Alter-
natively, viewing facial pain expressions of a person displaying his/
her sorrow could promote empathic responses in an observer
[3,54], which in turn might heighten the perception of the obser-
ver’s pain [15,41].

Thus, the congruency between the one’s own experience and
the perception of pain signals observed in others might drive a
potentiating proalgesic mechanism. In a similar vein, pain-related
pictures were found to increase pain perception, which is ex-
plained by the induction of compassionate hyperalgesia [11]. Addi-
tional evidence for the amplification of pain driven by the
congruency of extero- and interoceptive sensations (seeing pain
vs feeling pain) comes from a recent study showing that watching
facial pain expressions results in augmented pain ratings com-
pared to neutral faces [27].

It is difficult to disentangle the effects of attention and emotion
on pain even more since the neural circuits seem to overlap to a
large extent [46,47]. In the present study, the comparison between
pain ratings in video trials (dynamic facial expressions) and control
trials (fixation cross) indicates a general pain reduction, most prob-
ably induced by an attentional capture of the face stimuli. This is in
line with earlier findings showing that distraction leads to reduced
pain perception [45,51], for instance, when participants were ex-
posed to virtual reality scenarios [30] or when focusing on the con-
tent of distractive emotional pictures [16]. Our results show that
this effect is further modulated by the emotional content of the fa-
cial video stimuli, such that pain faces resulted in highest pain rat-
ings. This is particularly remarkable because threatening facial
stimuli [38,53], and especially the expression of pain [35], were
shown to receive highest processing resources and, according to
the attentional modulation of pain, should have resulted in de-
creased pain ratings. The relative increase of pain perception while
watching pain compared to other emotional facial expressions
points to the assumption of a congruency-mediated pain modula-
tion that further underscores the special relevance of facial pain
expressions for the communication and actual experience of pain
[35].

For the investigation of interactions between pain and emotion,
the quality of experimental pain and the selection of affective stim-
uli seem crucial. In the present study, we administered phasic
painful stimuli that can easily be linked to the facial reactions in
the videos. Aspects of compatibility and context during concomi-
tant pain and emotion experience need to be further investigated
in future research.
4.2. Facial reactions to emotions and pain

Facial expressions of pain were expected to lead to enhanced re-
sponses in facial muscles (M. corrugator supercilii, M. orbicularis
oculi, and M. zygomaticus major), which have been found to be reli-
ably activated during the actual experience of pain [19–21,32,33].
However, in the present study, no emotion-congruent facial reac-
tions were observed in response to painful facial expressions; only
for joy faces were congruent facial reactions found. This is in line
with our recent study where no distinct pattern of facial muscle
activity in response to pain faces was observed [35], which sup-
ports the assumption that pain-congruent facial responses rely
on actively taking the perspective of a person in pain [35], which
is further modulated by trait empathy [44].

The application of pain in absence of video stimuli resulted in
elevated responses of M. orbicularis oculi, in line with descriptions
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of the facial pain expression that includes muscle contraction
around the eyes [32,33].

Altogether, facial activity seems to be most pronounced in the
second interval of data analysis, for the responses to both the video
stimuli and the pain stimulation, suggesting an accumulating re-
sponse that evolves over time. A significant correlation of M. zyg-
omaticus responses and pain ratings are in accordance with
recent observations of the so-called smile of pain, accompanying
the actual experience of pain [21]. Nonpainful stimulation showed
no significant correlation between subjective ratings and muscular
reactions, underscoring the pain specificity of the results. These
findings highlight the crucial role of facial pain expression for
encoding and communicating individual pain experiences, which
might represent a promising nonverbal alternative for quantifying
pain, especially with regard to individuals that are unable to com-
municate their pain status adequately [22].

4.3. Pain affects emotional face processing

Research on the impact of pain on emotion processing is rather
scarce, but one study investigated how pain modulates the pro-
cessing of affective pictures [12], and found a dampening effect
of pain only for the perception of positive emotional stimuli. Sim-
ilarly, it was found that pain distorted concomitant emotion eval-
uation processes only for happy faces, showing how pain
diminishes positive affective appraisal [10]. In a recent study on
the impact of pain on electrocortical emotional face processing, a
general reduction of face-evoked event related potential (ERP)
amplitudes was found, suggesting a broad allocation of attentional
resources towards pain and away from the emotional faces [52]. In
the present study, we found higher arousal ratings for negative fa-
cial expressions – most prominent for pain expressions – when
participants received pain, whereas no differences were found for
neutral or joy expressions. This demonstrates a similar effect that
we found for pain ratings, that is, a congruency-mediated increase
of pain perception that holds true for emotional arousal perception
as well.

4.4. Limitations

A possible limitation of the present study is the assessment of
pain intensity ratings only due to timing issues. In general, affec-
tive pain ratings were shown to be more sensitive for emotional
modulation [26,46], whereas pain intensity measures seem to be
more sensitive for attention manipulation [18]. Accordingly, in
the present study, effects on affective pain measures would prob-
ably have been even more pronounced. Also, the parametric mod-
ulation of pain (eg, no pain, above threshold) could help to
disentangle facial muscle activity in response to emotions and
thermal stimulation. Similarly, the variation of task instructions
and thereby attentional focus during the experiment might be cru-
cial to scrutinize the modulation of pain by attention and emotion.

4.5. Conclusion

While the influence of emotion on pain has often been investi-
gated, the opposite effect of pain on emotion is only roughly under-
stood. In addition, although pain is often accompanied by a distinct
facial expression, its influence on the actual experience of pain is
unclear. The present study showed that pain increases the per-
ceived emotional arousal of painful facial expressions and, in turn,
facial expressions of pain most strongly increase the perception of
concomitant painful stimulation, compared to other facial expres-
sions. For the first time, to our knowledge, the present study inves-
tigated effects of pain perception on emotional facial expressions
including pain, and vice versa, the effect of facial expressions on
pain processing within the same experimental protocol. Results
point at mutual influences of pain and emotion processing in
healthy individuals and raise the question of maladaptive mecha-
nisms in patients suffering chronic pain or affective disorders,
who show alterations in these interacting processing systems [1,2].
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