Short Esophagus

Nicholas R. Kunio, MD, James P. Dolan, MD, John G. Hunter, MD,*

INTRODUCTION

Hiatal hernias, paraesophageal hernias, and gastroesophageal reflux disease (GERD) are common problems.1–4 Complications related to these disorders can occur in up to 40% of patients.5 One of the most controversial complications is the acquired short esophagus. Although numerous studies have been published describing the short esophagus and its pathophysiology, diagnosis, and treatment,6–10 various reputable investigators have challenged its existence.11–14 Consequently, this dichotomy contributes to the confusion underlying this entity. This article considers the history, pathophysiology, diagnosis, and current treatment options for the shortened esophagus.

HISTORY

Some investigators have credited Dietlen and Knierim15 with the first mention of a short esophagus in their description of a pregnant patient whose stomach was found to be intrathoracic on radiograph. However, others have attributed this description to

KEYWORDS

Esophagus • Short esophagus • Gastroesophageal reflux disease • Hiatal hernia

KEY POINTS

- In the presence of long-standing and severe gastroesophageal reflux disease, patients can develop various complications, including a shortened esophagus.
- Standard preoperative testing in these patients should include endoscopy, esophagography, and manometry, whereas the objective diagnosis of a short esophagus must be made intraoperatively following adequate mediastinal mobilization.
- If left untreated, it is a contributing factor to the high recurrence rate following fundoplications or repair of large hiatal hernias.
- A laparoscopic Collis gastroplasty combined with an antireflux procedure offers safe and effective therapy.
Akerlund16 or Findlay.17,18 A shortened esophagus shown on esophagram was first reported by Fineman and Conner19 in 1924,18 whereas Woodburn Morison20 provided the earliest endoscopic description in 1930.18 The grave operative challenges presented by a shortened esophagus was first shown in Plenk’s description of a case of perforation and peritonitis in which the stomach could not be replaced into the abdomen, leading to a fatal situation.18,21,22 This portrayal is consistent with the modern understanding of shortened esophagus in which esophageal length is insufficient to allow the esophagogastric junction to rest below the diaphragm, as first described by Barrett in 1950.18,23,24 From this, the theory that chronic reflux disease was the underlying cause for acquired short esophagus was first proposed by Lortat-Jacob25 a few years later.

INCIDENCE

Depending on the study, the incidence of shortened esophagus can vary widely. It has been reported to be as high as 60%26 and as low as 0% in older open11 and more recent laparoscopic series.27 If the intraoperative requirement for extensive mediastinal dissection or the performance of a Collis gastroplasty is used to define the presence of shortened esophagus then the incidence in the open literature is between 8% and 10%.28,29 Using the same definition, a wider range (7%–19%) has been documented in various laparoscopic series.30–33 If the need for a Collis gastroplasty is used as the most restrictive definition, then retrospective review of the literature indicates that between 1% and 5% of patients undergoing GERD-related surgery meet criteria.30,34–36

PATHOPHYSIOLOGY

The most common entity associated with acquired short esophagus is chronic GERD, which results in a persistent inflammatory response.7 In the setting of a dysfunctional lower esophageal sphincter the esophageal mucosa is exposed to either acidic or alkaline reflux and the normal esophageal squamous epithelium provides an inadequate barrier to the damaging effects of refluxed gastric juices. Animal models,37,38 as well as in-vivo human10 studies, have shown that refluxed gastric fluid leads to deeper penetration of hydrogen ions into the wall of the esophagus with localized cellular damage. The resulting inflammation causes tissue edema, migration of inflammatory cells into the damaged tissue, attempted healing, and ultimately tissue fibrosis. With repeated exposure over a period of time, the inflammatory process can extend transmurally. Transmural inflammation then leads to longitudinal contracture of the transmural scar and the clinical manifestation of esophageal shortening.7

PREOPERATIVE ASSESSMENT

Typical studies used in the preoperative evaluation of patients with GERD include dynamic esophagram, esophagogastroduodenoscopy, and esophageal manometry. Many prior attempts at identifying preoperative indicators of short esophagus have identified factors with low specificity.31,39–41 Some investigators contend that evidence of a nonreducing type I hiatal hernia greater than 5 cm in length or a type III hiatal hernia on barium esophagram is predictive of short esophagus being present at surgery.42 However, when a retrospective, blinded review of patients who had undergone Collis gastroplasty was performed, barium esophagram had a positive predictive value of only 50%.7
Other studies have attempted to improve on this finding. Awad and colleagues31 performed a thorough evaluation of the predictive utility of all 3 diagnostic tests (esophagography, endoscopy, and manometry) individually and in conjunction with each other. When all were used together, the specificity for short esophagus was 100% but the sensitivity was only 28%. Esophagography and manometry used together had a 75% positive predictive value but, again, a low sensitivity of 28%. Manometric measurement alone had the best individual positive predictive value, but this was only 36%. Other investigators have also examined these 3 diagnostic modalities and reported that the presence of peptic stricture was the only significantly predictive factor for the need for Collis gastroplasty at surgery. Manometric esophageal length was associated with a short esophagus if the measurement was less than the fifth percentile, but was unable to yield a minimal cutoff in defining a short esophagus because of wide variability in measurements.39

Recently, Yano and colleagues43 examined the utility of the esophageal length index (ELI), defined as the ratio of endoscopic esophageal length (in centimeters) to the patient’s height (in meters) in order to help adjust for the variability in individual measurements caused by differences in height. They identified an ELI cutoff of 19.5 or less as having a positive predictive value of 81% (19% false-negative rate) and a negative predictive value of 83%. This index provides the most contemporary and useful tool in anticipating the need for an esophageal lengthening procedure during operation. Current preoperative diagnostic tests can only help surgeons anticipate the potential need for a Collis gastroplasty. They have not yet replaced intraoperative assessment and esophageal measurement as a requirement to make the final decision.

INTRAOPERATIVE ASSESSMENT

In order to define a shortened esophagus, the relationship of the esophagogastric junction to the hiatus must be assessed carefully. Most commonly, a shortened esophagus is associated with the presence of a large paraesophageal hernia. Consequently, after the stomach has been reduced, the hernia sac incised and pulled into the abdomen, and the short gastric vessels divided, mediastinal esophageal dissection is performed. Intra-abdominal esophageal length should be measured after the distal 3 to 4 cm of the mediastinal esophagus has been mobilized (type I dissection).7 If insufficient length still exists after this, an extended (type II) dissection can be performed. Various investigators have described the limits of this dissection. Johnson and colleagues34 described up to 8 cm of mediastinal length being mobilized, whereas O’Rourke and colleagues32 stated that up to 10 cm of mediastinal dissection can be performed. Swanstrom and Hansen44 used the level of the carina as their upper limit and DeMeester45 the inferior pulmonary veins. Extended dissection may be necessary and beneficial in some cases. In their series of 106 patients, Bochkarev and colleagues46 found that, with extended mediastinal dissection, adequate intra-abdominal esophageal length could be obtained, and this obviated a Collis gastroplasty.

Any traction on the esophagogastric junction should be relieved following the completion of the dissection. This relief should include removal of the nasogastric tube or bougie, because these can provide superior displacement and lead to inaccurate measurement of intra-abdominal esophageal length. Assuming the esophagogastric junction can be easily identified, the distance between it and the hiatus is measured.7,34 The authors prefer to use the open jaws of a laparoscopic grasper for this measurement. When fully open, these measure 2.5 cm across. The graspers can then be placed alongside the dissected intra-abdominal esophagus to determine
whether sufficient length for a fundoplication has been achieved (Fig. 1). If less than this distance is present after an extended mediastinal dissection, then a shortened esophagus is confirmed and a Collis-type gastroplasty is needed.

In situations in which the esophagogastric junction cannot easily be delineated, certain steps must be taken before intra-abdominal esophageal measurements are made. Conditions that can make visualization of the esophagogastric junction difficult include a large redundant hernia sac or a prominent junction fat pad that obscures the landmark. Dissection and removal of this excess tissue may be needed in order to properly identify the junction,45,47 and this is commonly performed in our practice. When this proves insufficient for proper identification of the esophagogastric junction, endoscopic evaluation can be performed to aid with identification. By endoscopically identifying the junction and then transilluminating the esophageal wall the location can be seen laparoscopically and this can be successfully completed in almost all cases. Other investigators have also described how endoscopic measurement of the distance between the junction and the crural arch can also be used to determine whether sufficient length has been obtained.7,40

TREATMENT

The importance of identifying and correcting a short esophagus is underscored because the risk of fundoplication failure or crural disruption with wrap herniation is increased in cases in which a tension-free repair was not successfully performed.48,49 This failure to treat a shortened esophagus is thought to be, in part, responsible for the 20\% to 33\% rate of repair failure in cases of giant paraesophageal hernias.50–52

The most commonly used method to obtain esophageal lengthening is the Collis gastroplasty and its current variation. Initially, this operation involved mobilization of the esophagus to the level of the aortic arch and was performed through a thoracoabdominal incision.53 A dilator was inserted along the lesser curvature. Two clamps were then attached to the cardia parallel to the dilator and the stomach was divided, followed by oversewing the resection lines. The tubularized portion of the stomach then acted as a neoesophagus that, when combined with a standard antireflux procedure, allowed a tension-free repair.

With the advent of minimally invasive surgery as well as advances in surgical equipment, several novel adaptations of the Collis gastroplasty have evolved. Swanstrom and colleagues90 first described their combination of a thoracoscopic and

![Fig. 1](image-url)
laparoscopic gastroplasty with a Nissen fundoplication. In their approach an endoscopic linear stapler was introduced through the right chest, brought across the mediastinal pleura, and then brought trans-hiatally inserted into the abdomen. After a bougie had been inserted, the stapler was fired parallel to the lesser curvature against the left aspect of the bougie.54 A similar technique, by means of a left-sided thoracoscopic stapler approach, was first described by Awad and colleagues31 in 2000.55 Taken together, the major disadvantage to these approaches was the need to enter 2 separate body cavities. In theory, this increased the risk of injury to intrathoracic structures.

The first totally laparoscopic approach to a modified Collis technique was described by Johnson and colleagues34 in 1998. They used a laparoscopic version of the open approach initially described by Steichen.56 With a 48-French bougie in place along the lesser curvature, a sealed transgastric window was created in the fundus using a circular stapling device. A linear stapler was then fired alongside the bougie dividing the fundus from the superior aspect of the fundal window to the angle of His, creating the neoesophagus. A floppy Nissen fundoplication was then created. After this description, an additional step, involving resection of the fundal apex, was described because of concerns for tissue ischemia.57 This approach is technically challenging and involves a minilaparotomy in order to accommodate the circular stapler. In addition, Pierre and colleagues58 reported a staple line leak in 3% of patients who underwent the procedure.

The fully laparoscopic approach to the Collis-type gastroplasty was made possible by the development of the articulating endoscopic linear stapler. Terry and colleagues57 reported that this technique was first developed for a laparoscopic vertical banded gastroplasty by Champion,59 and this remains our technique of choice. The wedge gastroplasty is performed using the same port placement as is used for standard laparoscopic fundoplication (\textbf{Fig. 2}). After completion of all dissection, a 48-French bougie is inserted alongside the lesser curvature. The assistant retracts the gastric fundus inferiorly while the surgeon maintains traction on the greater curvature just below the level of the angle of His. An articulating endoscopic linear stapler is then placed through the left subcostal port, maximally articulated and fired transversely.

\textbf{Fig. 2.} Standard port placement for laparoscopic wedge Collis gastroplasty.
across the superior fundus to a point approximately 3 cm below the angle of His and abutting the bougie. While the assistant applies lateral traction on the wedge of fundus to be resected, a vertical firing of the linear stapler is then made parallel to the esophagus against the bougie, completing the wedge resection (Fig. 3). The resected portion is then removed from the stomach. A floppy fundoplication is then performed over a 56-French to 60-French bougie.

RESULTS OF OPERATIVE REPAIR

Before the advent of minimally invasive transabdominal surgery, the transthoracic Collis gastroplasty had been shown to have excellent long-term results. Symptomatic reflux control at 10 years following surgery was reported to be as high as 88%[^60][^61]. More recently, minimally invasive techniques have been used to perform a Collis gastroplasty from a transabdominal approach. Short-term results have been satisfactory. However, it is difficult to identify a single approach as producing superior outcomes given the paucity of long-term data.

As minimally invasive approaches to the Collis gastroplasty have evolved, an improvement in operative time has been seen. Mean operative time for the combined thoracosopic/laparoscopic technique was 257 minutes[^54]. It increased to 294 minutes with the challenging dual-stapler transabdominal approach[^34]. At 184 minutes the transabdominal wedge gastroplasty showed the shortest mean operative time of all the minimally invasive techniques[^57].

[^60]: Kunio et al.

Fig. 3. Important steps in constructing a wedge Collis gastroplasty during a laparoscopic paraesophageal hernia repair. (A) Articulating stapler fired across fundus perpendicular to bougie. (B) Articulating stapler fired parallel and abutting bougie. (C) Completed wedge gastroplasty with creation of neoesophagus. (Courtesy of Oregon Health & Science University, Portland, OR; with permission.)
Perioperative morbidity following a Collis gastroplasty has been shown to occur in as few as 8% of cases, but more commonly ranges between 19% and 36% (Table 1). Complications commonly seen following a Collis gastroplasty included atelectasis, atrial fibrillation, ileus, pneumonia, and urinary tract infection, whereas pneumothorax and pleural effusion were more often shown in series using a combined thoracoscopic/laparoscopic approach. Of particular importance in Collis gastroplasty is the risk of postoperative leak. Houghton and colleagues showed a similar incidence of perforation or leak when comparing patients having a Collis gastroplasty with those having a fundoplication alone, whereas Nason and colleagues showed a significantly increased risk of leak (2.7% vs 0.6%) when comparing patients after Collis and standard fundoplication. Both studies showed similar overall morbidity between groups. All studies to date have shown a very low incidence of perioperative mortality, similar to that seen with standard fundoplication (see Table 1).

Clinical outcomes have shown consistent improvement across studies following performance of a Collis gastroplasty. The incidence of persistent or recurrent reflux symptoms following a Collis gastroplasty since the advent of minimally invasive techniques ranges between 7% and 24%. Postoperative dysphagia rates have been shown to be between 10% and 28% (see Table 1). Comparing standard fundoplication with Collis gastroplasty, Houghton and colleagues showed a significantly increased incidence of requiring postoperative dilatation in patients after Collis gastroplasty (6% vs 2%). Overall the Collis gastroplasty has shown good patient satisfaction, ranging from 77% to 93%, and this is comparable with that seen in patients undergoing fundoplication alone.

As shown in Table 1, the incidence of postoperative hernia recurrence or wrap failure following a Collis gastroplasty and antireflux procedure can be low (0% to 18%). These reported rates are in contrast with prior studies examining the risk of hernia recurrence following laparoscopic paraesophageal hernia repair. The patients included in these studies did not undergo esophageal lengthening procedures and recurrence rates seen in those having a minimally invasive approach ranged from 32% to 42%. It has been suggested that these high rates of recurrence can be attributed to the failure to identify a short esophagus and perform a lengthening procedure. This theory is reinforced by the significant reduction in recurrence rates seen to date in series examining patients undergoing a Collis gastroplasty and antireflux procedure.

Two main concerns have been raised with regard to the Collis gastroplasty. The first is that the neoesophagus lacks motility and in theory may contribute to postoperative dysphagia. Although postoperative dysphagia rates range between 3% and 13%, dysphagia was generally improved in comparisons between postoperative and preoperative incidence. The second concern centers on the presence of acid-secreting gastric mucosa within the neoesophagus, which can potentially contribute to ongoing esophagitis. During 24-hour pH testing, Jobe and colleagues found that 7 out of 14 patients in their series of combined thoracoscopic/laparoscopic gastroplasty had abnormal findings, with a mean DeMeester score of 100. More recently, Mor and colleagues compared the acid clearance time between normal patients, those following Nissen fundoplication, and those following Nissen-Collis gastroplasty. Esophageal acid clearance time was significantly greater in the Nissen-Collis group. Pathologic esophageal acid exposure was seen in 10% of patients after Nissen fundoplication and 22% of patients after Nissen-Collis gastroplasty; however, this difference was not statistically significant.
Table 1
Postoperative functional results after Collis gastroplasty

<table>
<thead>
<tr>
<th>Study</th>
<th>Type</th>
<th>Approach</th>
<th>n</th>
<th>n, Follow-up</th>
<th>Follow-up</th>
<th>Antireflux Procedure</th>
<th>Mortality, n (%)</th>
<th>Morbidity, n (%)</th>
<th>Reflux Symptoms, n (%)</th>
<th>Dysphagia, n (%)</th>
<th>Recurrence, n (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pearson et al, 26 1987</td>
<td>Open</td>
<td>Thoracic</td>
<td>215</td>
<td>NA</td>
<td>1–15 y</td>
<td>Toupet</td>
<td>NA</td>
<td>NA</td>
<td>6 (3)</td>
<td>24 (11)</td>
<td>6 (3)</td>
</tr>
<tr>
<td>Stirling & Orringer, 60 1989</td>
<td>Open</td>
<td>Thoracic</td>
<td>353</td>
<td>261</td>
<td>44 mo</td>
<td>Nissen</td>
<td>4 (1.1)</td>
<td>28 (8)</td>
<td>65 (25)</td>
<td>44 (17)</td>
<td>26 (10)</td>
</tr>
<tr>
<td>Swanstrom et al, 30 1996 & Jobe et al, 54 1998</td>
<td>Laparoscopic</td>
<td>Thoracic/Abdominal</td>
<td>15</td>
<td>14</td>
<td>14 mo</td>
<td>Nissen or Toupet</td>
<td>0</td>
<td>3 (20)</td>
<td>2 (14)</td>
<td>2 (14)</td>
<td>0</td>
</tr>
<tr>
<td>Johnson et al, 34 1998</td>
<td>Laparoscopic</td>
<td>Abdominal</td>
<td>9</td>
<td>9</td>
<td>12 mo</td>
<td>Nissen</td>
<td>0</td>
<td>2 (22)</td>
<td>1 (11)</td>
<td>1 (11)</td>
<td>NA</td>
</tr>
<tr>
<td>Awad et al, 31 2001 & Awad et al, 55 2000</td>
<td>Laparoscopic</td>
<td>Thoracic/Abdominal</td>
<td>11</td>
<td>11</td>
<td>6–35 mo</td>
<td>Nissen or Toupet</td>
<td>0</td>
<td>4 (36)</td>
<td>1 (9)</td>
<td>0</td>
<td>2 (18)</td>
</tr>
<tr>
<td>Pierre et al, 58 2002</td>
<td>Laparoscopic</td>
<td>Abdominal</td>
<td>112</td>
<td>NA</td>
<td>1–78 mo</td>
<td>Nissen</td>
<td>1 (0.8)</td>
<td>31 (28)</td>
<td>NA</td>
<td>NA</td>
<td>3 (3)</td>
</tr>
<tr>
<td>Garg et al, 63 2009</td>
<td>Open/Laparoscopic</td>
<td>Thoracic/Abdominal</td>
<td>85</td>
<td>50</td>
<td>9–111 mo</td>
<td>Nissen or Toupet</td>
<td>1 (1)</td>
<td>26 (31)</td>
<td>12 (24)</td>
<td>14 (28)</td>
<td>NA</td>
</tr>
<tr>
<td>Houghton et al, 64 2007</td>
<td>Open/Laparoscopic</td>
<td>Abdominal</td>
<td>63</td>
<td>62</td>
<td>1–64 mo</td>
<td>Nissen or Toupet</td>
<td>0</td>
<td>12 (19)</td>
<td>12 (20)</td>
<td>6 (10)</td>
<td>1 (2)</td>
</tr>
<tr>
<td>Nason et al, 65 2011</td>
<td>Laparoscopic</td>
<td>Abdominal</td>
<td>454</td>
<td>368</td>
<td>33 mo</td>
<td>Nissen, Toupet, Dor</td>
<td>7 (1.5)</td>
<td>89 (20)</td>
<td>NA</td>
<td>NA</td>
<td>53 (16)</td>
</tr>
<tr>
<td>Zehetner et al, 62 2014</td>
<td>Laparoscopic</td>
<td>Abdominal</td>
<td>85</td>
<td>NA</td>
<td>12 mo</td>
<td>Nissen or Toupet</td>
<td>0</td>
<td>7 (8)</td>
<td>6 (7)</td>
<td>14 (16)</td>
<td>2 (2.4)</td>
</tr>
</tbody>
</table>

Abbreviation: NA, not available.

Data from Refs. 26, 30, 31, 34, 55, 58, 60, 62–65.
SUMMARY

In the presence of long-standing and severe GERD, patients can develop various complications, including a shortened esophagus. Standard preoperative testing in these patients should include endoscopy, esophagography, and manometry, whereas the objective diagnosis of a short esophagus must be made intraoperatively following adequate mediastinal mobilization. Some debate still persists as to the validity of this entity but there are now significant data available to support its existence. If left untreated, it is a contributing factor to the high recurrence rate following fundoplications or repair of large hiatal hernias. A laparoscopic Collis gastroplasty combined with an antireflux procedure offers safe and effective therapy.

REFERENCES

